Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebra of random variables
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Variance algebra for random variables == The variance <math>\operatorname{Var}[Z]</math> of the random variable <math>Z</math> resulting from an algebraic operation between random variables can be calculated using the following set of rules: * [[Addition]]: <math display="block">\operatorname{Var}[Z] = \operatorname{Var}[X+Y] = \operatorname{Var}[X] + 2 \operatorname{Cov}[X,Y] + \operatorname{Var}[Y].</math>Particularly, if <math>X</math> and <math>Y</math> are [[Independence (probability theory)|independent]] from each other, then: <math display="block">\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y].</math> * [[Subtraction]]: <math display="block">\operatorname{Var}[Z] = \operatorname{Var}[X-Y] = \operatorname{Var}[X] - 2 \operatorname{Cov}[X,Y] + \operatorname{Var}[Y].</math>Particularly, if <math>X</math> and <math>Y</math> are independent from each other, then: <math display="block">\operatorname{Var}[X-Y] = \operatorname{Var}[X] + \operatorname{Var}[Y].</math> That is, for [[independent random variables]] the variance is the same for additions and subtractions: <math display="block">\operatorname{Var}[X+Y] = \operatorname{Var}[X-Y] = \operatorname{Var}[Y-X] = \operatorname{Var}[-X-Y].</math> * [[Multiplication]]: <math display="block">\operatorname{Var}[Z] = \operatorname{Var}[XY] = \operatorname{Var}[YX].</math> Particularly, if <math>X</math> and <math>Y</math> are independent from each other, then: <math display="block">\begin{align} \operatorname{Var}[XY] &= \operatorname{E}[X^2] \cdot \operatorname{E}[Y^2] - {\left(\operatorname{E}[X] \cdot \operatorname{E}[Y]\right)}^2 \\[2pt] &= \operatorname{Var}[X] \cdot \operatorname{Var}[Y] + \operatorname{Var}[X] \cdot {\left(\operatorname{E}[Y]\right)}^2 + \operatorname{Var}[Y] \cdot {\left(\operatorname{E}[X]\right)}^2. \end{align}</math> * [[Division (mathematics)|Division]]: <math display="block">\operatorname{Var}[Z] = \operatorname{Var}[X/Y] = \operatorname{Var}[X \cdot (1/Y)] = \operatorname{Var}[(1/Y) \cdot X].</math> Particularly, if <math>X</math> and <math>Y</math> are independent from each other, then: <math display="block">\begin{align} \operatorname{Var}[X/Y] &= \operatorname{E}[X^2] \cdot \operatorname{E}[1/Y^2] - {\left(\operatorname{E}[X] \cdot \operatorname{E}[1/Y]\right)}^2 \\[2pt] &= \operatorname{Var}[X] \cdot \operatorname{Var}[1/Y] + \operatorname{Var}[X] \cdot {\left(\operatorname{E}[1/Y]\right)}^2 + \operatorname{Var}[1/Y] \cdot {\left(\operatorname{E}[X]\right)}^2. \end{align}</math> * [[Exponentiation]]: <math display="block">\operatorname{Var}[Z] = \operatorname{Var}[X^Y] = \operatorname{Var}[e^{Y\ln(X)}]</math> where <math>\operatorname{Cov}[X,Y] = \operatorname{Cov}[Y,X]</math> represents the covariance operator between random variables <math>X</math> and <math>Y</math>. The variance of a random variable can also be expressed directly in terms of the covariance or in terms of the expected value: <math display="block">\operatorname{Var}[X] = \operatorname{Cov}(X,X) = \operatorname{E}[X^2] - \operatorname{E}[X]^2</math> If any of the random variables is replaced by a deterministic variable or by a constant value (<math>k</math>), the previous properties remain valid considering that <math>\Pr(X = k) = 1</math> and <math>\operatorname{E}[X] = k</math>, <math>\operatorname{Var}[X] = 0</math> and <math>\operatorname{Cov}[Y,k] = 0</math>. Special cases are the addition and multiplication of a random variable with a deterministic variable or a constant, where: * <math>\operatorname{Var}[k+Y] = \operatorname{Var}[Y]</math> * <math>\operatorname{Var}[kY] = k^2 \operatorname{Var}[Y]</math> If <math>Z</math> is defined as a general non-linear algebraic function <math>f</math> of a random variable <math>X</math>, then: <math display="block">\operatorname{Var}[Z] = \operatorname{Var}[f(X)] \neq f(\operatorname{Var}[X])</math> The exact value of the variance of the non-linear function will depend on the particular probability distribution of the random variable <math>X</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)