Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Artin–Mazur zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == * {{Citation | doi=10.2307/1970384 | last1=Artin | first1=Michael | author1-link=Michael Artin | last2=Mazur | first2=Barry | author2-link=Barry Mazur | title=On periodic points | mr=0176482 | year=1965 | journal=[[Annals of Mathematics]] |series=Second Series | issn=0003-486X | volume=81 | pages=82–99 | issue=1 | publisher=Annals of Mathematics | jstor=1970384}} * {{citation | last = Ruelle | first = David | issue = 8 | journal = Notices of the American Mathematical Society | mr = 1920859 | pages = 887–895 | title = Dynamical zeta functions and transfer operators | url = https://www.ams.org/notices/200208/fea-ruelle.pdf | volume = 49 | year = 2002}} * {{citation | first1=Motoko |last1=Kotani | author1-link = Motoko Kotani| first2=Toshikazu | last2=Sunada | author2-link=Toshikazu Sunada | title=Zeta functions of finite graphs | journal=J. Math. Sci. Univ. Tokyo | volume=7 | year=2000 | pages=7–25|citeseerx=10.1.1.531.9769 }} * {{citation | title=Zeta Functions of Graphs: A Stroll through the Garden | volume=128 | series=Cambridge Studies in Advanced Mathematics | first=Audrey | last=Terras | author-link=Audrey Terras | publisher=[[Cambridge University Press]] | year=2010 | isbn=978-0-521-11367-0 | zbl=1206.05003 }} {{DEFAULTSORT:Artin-Mazur zeta function}} [[Category:Zeta and L-functions]] [[Category:Dynamical systems]] [[Category:Fixed points (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)