Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Associated Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Closed Form=== Starting from the explicit form provided in the article of [[Legendre polynomials|Legendre Polynomials]] <math> P_l(x)=2^l\sum_{k=0}^l x^k\binom{l}{k}\binom{(l+k-1)/2}{l} </math> one obtains with the standard rules for <math>m</math>-fold derivatives for powers <math display="block"> P_l^m(x)=(-1)^{m} \cdot 2^{l} \cdot (1-x^2)^{m/2} \cdot \sum_{k=m}^l \frac{k!}{(k-m)!}\cdot x^{k-m} \cdot \binom{l}{k} \binom{\frac{l+k-1}{2}}{l} </math> with simple monomials and the [[Binomial coefficient#Generalization and connection to the binomial series|generalized form of the binomial coefficient]]. The sum effectively extends only over terms where <math>l-k</math> is even, because for odd <math>l-k</math> the binomial factor <math>\binom{(l+k-1)/2}{l}</math> is zero. Summarizing results of Doha <ref>{{Cite journal |last=Doha |first=E. H. |year=1991|title=The coefficients of differentiated expansions and derivatives of ultraspherical polynomials |journal=Computers & Mathematics with Applications |volume=21 |issue=2 |pages=115β122 |doi=10.1016/0898-1221(91)90089-M |issn=0898-1221}}</ref> the expansion of derivatives into Legendre Polynomials defines coefficients <math>\tau</math> <math> \frac{d^m}{dx^m}P_l(x) = \sum_{t=0}^{\lfloor (l-m)/2\rfloor} \tau_{l,m,t} P_{l-m-2t}(x) , </math> where <math> \tau_{l,m,t} = \epsilon_{l-t} \frac{l-m-2t+1/2}{2l-2t+1}\frac{(2m)!}{2^mm!} \binom{2l-2t+1}{2m} \frac{m}{m+t}\binom{m+t}{t} \frac{1}{\binom{l-t}{m}} , </math> and where <math> \epsilon_q\equiv \begin{cases} 1, & q=0;\\ 2, & q\ge 1 \end{cases} </math> is the Neumann factor.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)