Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autocorrelation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Normalization === It is common practice in some disciplines (e.g. statistics and [[time series analysis]]) to normalize the autocovariance function to get a time-dependent [[Pearson correlation coefficient]]. However, in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably. The definition of the autocorrelation coefficient of a stochastic process is<ref name=KunIlPark/>{{rp|p.169}} <math display=block>\rho_{XX}(t_1,t_2) = \frac{\operatorname{K}_{XX}(t_1,t_2)}{\sigma_{t_1}\sigma_{t_2}} = \frac{\operatorname{E}\left[(X_{t_1} - \mu_{t_1}) \overline{(X_{t_2} - \mu_{t_2})} \right]}{\sigma_{t_1}\sigma_{t_2}} .</math> If the function <math>\rho_{XX}</math> is well defined, its value must lie in the range <math>[-1,1]</math>, with 1 indicating perfect correlation and β1 indicating perfect [[anti-correlation]]. For a [[Stationary process#wide-sense stationarity|wide-sense stationary]] (WSS) process, the definition is <math display=block>\rho_{XX}(\tau) = \frac{\operatorname{K}_{XX}(\tau)}{\sigma^2} = \frac{\operatorname{E} \left[(X_{t+\tau} - \mu)\overline{(X_{t} - \mu)}\right]}{\sigma^2}</math>. The normalization is important both because the interpretation of the autocorrelation as a correlation provides a scale-free measure of the strength of [[statistical dependence]], and because the normalization has an effect on the statistical properties of the estimated autocorrelations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)