Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Baryon number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Conservation == {{See also|Conservation law (physics)}} Baryon number is a 'conserved' quantity in the sense that for perturbutative reactions in the [[Standard Model]] the total baryon number of the incoming particles is equal to the baryon number of the outgoing particles. Baryon number violation has never been observed experimentally.<ref>{{Cite journal |last1=Navas |first1=S. |last2=Amsler |first2=C. |last3=Gutsche |first3=T. |last4=Hanhart |first4=C. |last5=Hernández-Rey |first5=J. J. |last6=Lourenço |first6=C. |last7=Masoni |first7=A. |last8=Mikhasenko |first8=M. |last9=Mitchell |first9=R. E. |last10=Patrignani |first10=C. |last11=Schwanda |first11=C. |last12=Spanier |first12=S. |last13=Venanzoni |first13=G. |last14=Yuan |first14=C. Z. |last15=Agashe |first15=K. |date=2024-08-01 |title=Review of Particle Physics |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001 |journal=Physical Review D |volume=110 |issue=3 |pages=030001 |doi=10.1103/PhysRevD.110.030001|hdl=20.500.11850/695340 |hdl-access=free }}</ref> However, neither Baryon number nor [[lepton number]] can from theory be shown to be conserved quantities due to nonperturbative effects in the [[Standard Model]].<ref>{{Cite journal |last=Kobach |first=Andrew |date=2016-07-10 |title=Baryon number, lepton number, and operator dimension in the Standard Model |url=https://linkinghub.elsevier.com/retrieve/pii/S0370269316301976 |journal=Physics Letters B |volume=758 |pages=455–457 |doi=10.1016/j.physletb.2016.05.050 |arxiv=1604.05726 |bibcode=2016PhLB..758..455K |issn=0370-2693}}</ref> These effects are, for example, [[Sphaleron|sphalerons]] and [[Instanton|instantons]]. The hypothesized [[Adler–Bell–Jackiw anomaly]] in [[electroweak interaction]]s<ref>{{Cite journal |last='t Hooft |first=G. |author-link=Gerard 't Hooft |date=1976-07-05 |title=Symmetry Breaking through Bell-Jackiw Anomalies |url=http://dx.doi.org/10.1103/physrevlett.37.8 |journal=Physical Review Letters |volume=37 |issue=1 |pages=8–11 |doi=10.1103/physrevlett.37.8 |bibcode=1976PhRvL..37....8T |issn=0031-9007|url-access=subscription }}</ref> is an example of an electroweak [[sphaleron]]. These reactions are massively suppressed at low energies/temperatures.<ref>{{Cite journal |last1=Klinkhamer |first1=F. R. |last2=Manton |first2=N. S. |date=1984-11-15 |title=A saddle-point solution in the Weinberg-Salam theory |url=https://doi.org/10.1103/physrevd.30.2212 |journal=Physical Review D |volume=30 |issue=10 |pages=2212–2220 |doi=10.1103/physrevd.30.2212 |bibcode=1984PhRvD..30.2212K |issn=0556-2821|url-access=subscription }}</ref><ref>{{Cite journal |last1=Klinkhamer |first1=F. R. |last2=Nagel |first2=P. |date=2017-07-12 |title=$SU(3)$ sphaleron: Numerical solution |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.016006 |journal=Physical Review D |volume=96 |issue=1 |pages=016006 |doi=10.1103/PhysRevD.96.016006|arxiv=1704.07756 |bibcode=2017PhRvD..96a6006K }}</ref> At high temperatures, in for example the early universe, they could explain electroweak baryogenesis and [[leptogenesis (physics)|leptogenesis]]. Sphalerons can only change the baryon and lepton number by 3 or multiples of 3 (the reactions create 3 leptons and 3 baryons or the corresponding antiparticles). This is because the sum of baryon and lepton number (see [[B − L|''B'' − ''L'']]) is a conserved quantity in the standard model.<ref>{{Cite journal |last1=Beringer |first1=J. |last2=Arguin |first2=J. -F. |last3=Barnett |first3=R. M. |last4=Copic |first4=K. |last5=Dahl |first5=O. |last6=Groom |first6=D. E. |last7=Lin |first7=C. -J. |last8=Lys |first8=J. |last9=Murayama |first9=H. |last10=Wohl |first10=C. G. |last11=Yao |first11=W. -M. |last12=Zyla |first12=P. A. |last13=Amsler |first13=C. |last14=Antonelli |first14=M. |last15=Asner |first15=D. M. |date=2012-07-20 |title=Review of Particle Physics |url=https://link.aps.org/doi/10.1103/PhysRevD.86.010001 |journal=Physical Review D |language=en |volume=86 |issue=1 |page=010001 |doi=10.1103/PhysRevD.86.010001 |bibcode=2012PhRvD..86a0001B |issn=1550-7998|hdl=10481/34377 |hdl-access=free }}</ref> The hypothetical concepts of [[grand unified theory]] (GUT) models and [[supersymmetry]] allows for the changing of a [[baryon]] into [[lepton]]s and antiquarks (see [[B − L|''B'' − ''L'']]), thus violating the conservation of both baryon and [[lepton number]]s.<ref>{{cite book |last=Griffiths |first=David |authorlink=David Griffiths (physicist) |title=Introduction to Elementary Particles |edition=2nd |year=2008 |publisher=John Wiley & Sons |location=New York |isbn=9783527618477 |url=https://books.google.com/books?id=Wb9DYrjcoKAC&q=%22In+the+grand+unified+theories+new+interactions+are+contemplated%2C+permitting+decays+such+as%22+%22in+which+baryon+number+and+lepton+number+change.%22&pg=PA77 |page=77 |quote=In the grand unified theories new interactions are contemplated, permitting decays such as {{SubatomicParticle|link=yes|Proton+}} → {{SubatomicParticle|link=yes|Positron}} + {{SubatomicParticle|link=yes|Pion0}} or {{SubatomicParticle|link=yes|Proton+}} → {{SubatomicParticle|link=yes|muon antineutrino}} + {{SubatomicParticle|link=yes|Pion+}} in which baryon number and lepton number change. |access-date=2020-10-12 |archive-date=2024-04-28 |archive-url=https://web.archive.org/web/20240428045336/https://books.google.com/books?id=Wb9DYrjcoKAC&q=%22In+the+grand+unified+theories+new+interactions+are+contemplated%2C+permitting+decays+such+as%22+%22in+which+baryon+number+and+lepton+number+change.%22&pg=PA77#v=snippet&q=%22In%20the%20grand%20unified%20theories%20new%20interactions%20are%20contemplated%2C%20permitting%20decays%20such%20as%22%20%22in%20which%20baryon%20number%20and%20lepton%20number%20change.%22&f=false |url-status=live }}</ref> [[Proton decay]] would be an example of such a process taking place, but has never been observed. [[Neutrinoless double beta decay]] is a reaction that would violate lepton number and neutron-to-antineutron oscillation would violate baryon number by −2 units.<ref name=":0" /> The conservation of baryon number is not consistent with the physics of [[black hole]] evaporation via [[Hawking radiation]].<ref>Harlow, Daniel and Ooguri, Hirosi", "Symmetries in quantum field theory and quantum gravity", hep-th 1810.05338 (2018)</ref> It is expected in general that quantum gravitational effects violate the conservation of all charges associated to global symmetries.<ref>Kallosh, Renata and Linde, Andrei D. and Linde, Dmitri A. and Susskind, Leonard", "Gravity and global symmetries", Phys. Rev. D 52 (1995) 912-935</ref> The violation of conservation of baryon number led [[John Archibald Wheeler]] to speculate on a [[mutability|principle of mutability]] for all physical properties.<ref>{{citation| title=John Archibald Wheeler: A Few Highlights of His Contributions to Physics| editor=[[Kip S. Thorne]]| date=October 28, 1985| work=Between Quantum and Cosmos|pages=9}}</ref> Searches for baryon number violation have been conducted in the following ways: * [[Kamiokande]] in 1985<ref>{{Cite web |title=INSPIRE |url=https://inspirehep.net/literature/216055 |access-date=2025-03-18 |website=inspirehep.net}}</ref> * ILL experiment in 1994<ref>{{Cite journal |last1=Cogswell |first1=B. K. |last2=Ernst |first2=D. J. |last3=Ufheil |first3=K. T. L. |last4=Gaglione |first4=J. T. |last5=Malave |first5=J. M. |date=2019-03-12 |title=Neutrino oscillations: The ILL experiment revisited |url=https://link.aps.org/doi/10.1103/PhysRevD.99.053003 |journal=Physical Review D |language=en |volume=99 |issue=5 |page=053003 |doi=10.1103/PhysRevD.99.053003 |arxiv=1802.07763 |bibcode=2019PhRvD..99e3003C |issn=2470-0010}}</ref> * [[Super-Kamiokande]] in 1999<ref>{{Cite web |title=INSPIRE |url=https://inspirehep.net/literature/512073 |access-date=2025-03-18 |website=inspirehep.net}}</ref> Two planned experiments are: * [[Hyper-Kamiokande]]<ref>{{Citation |last1=Proto-Collaboration |first1=Hyper-Kamiokande |title=Hyper-Kamiokande Design Report |date=2018-11-28 |url=https://arxiv.org/abs/1805.04163 |access-date=2025-03-18 |arxiv=1805.04163 |last2=Abe |first2=K. |last3=Abe |first3=Ke |last4=Aihara |first4=H. |last5=Aimi |first5=A. |last6=Akutsu |first6=R. |last7=Andreopoulos |first7=C. |last8=Anghel |first8=I. |last9=Anthony |first9=L. H. V.}}</ref> * HIBEAM<ref name=":0" />/NNBAR<ref>{{Cite journal |last1=Santoro |first1=V. |last2=Abou El Kheir |first2=O. |last3=Acharya |first3=D. |last4=Akhyani |first4=M. |last5=Andersen |first5=K.H. |last6=Barrow |first6=J. |last7=Bentley |first7=P. |last8=Bernasconi |first8=M. |last9=Bertelsen |first9=M. |last10=Beßler |first10=Y. |last11=Bianchi |first11=A. |last12=Brooijmans |first12=G. |last13=Broussard |first13=L. |last14=Brys |first14=T. |last15=Busi |first15=M. |date=2024-05-03 |title=HighNESS conceptual design report: Volume II. The NNBAR experiment. |url=https://journals.sagepub.com/doi/10.3233/JNR-230951 |journal=Journal of Neutron Research |language=en |volume=25 |issue=3–4 |pages=315–406 |doi=10.3233/JNR-230951 |issn=1023-8166}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)