Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bilinear transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Transformation of a General LTI System == A general [[LTI system]] has the transfer function <math display=block> H_a(s) = \frac{b_0 + b_1s + b_2s^2 + \cdots + b_Qs^Q}{a_0 + a_1s + a_2s^2 + \cdots + a_Ps^P} </math> The order of the transfer function {{math|''N''}} is the greater of {{math|''P''}} and {{math|''Q''}} (in practice this is most likely {{math|''P''}} as the transfer function must be [[Proper transfer function|proper]] for the system to be stable). Applying the bilinear transform <math display=block> s = K\frac{z - 1}{z + 1} </math> where {{math|''K''}} is defined as either {{math|2/''T''}} or otherwise if using [[frequency warping]], gives <math display=block> H_d(z) = \frac{b_0 + b_1\left(K\frac{z - 1}{z + 1}\right) + b_2\left(K\frac{z - 1}{z + 1}\right)^2 + \cdots + b_Q\left(K\frac{z - 1}{z + 1}\right)^Q} {a_0 + a_1\left(K\frac{z - 1}{z + 1}\right) + a_2\left(K\frac{z - 1}{z + 1}\right)^2 + \cdots + b_P\left(K\frac{z - 1}{z + 1}\right)^P} </math> Multiplying the numerator and denominator by the largest power of {{math|(''z'' + 1)<sup>β1</sup>}} present, {{math|(''z'' + 1)<sup>β''N''</sup>}}, gives <math display=block> H_d(z) = \frac{b_0(z+1)^N + b_1K(z-1)(z+1)^{N-1} + b_2K^2(z-1)^2(z+1)^{N-2} + \cdots + b_QK^Q(z-1)^Q(z+1)^{N-Q}} {a_0(z+1)^N + a_1K(z-1)(z+1)^{N-1} + a_2K^2(z-1)^2(z+1)^{N-2} + \cdots + a_PK^P(z-1)^P(z+1)^{N-P}} </math> It can be seen here that after the transformation, the degree of the numerator and denominator are both {{math|''N''}}. Consider then the pole-zero form of the continuous-time transfer function <math display=block> H_a(s) = \frac{(s - \xi_1)(s - \xi_2) \cdots (s - \xi_Q)}{(s - p_1)(s - p_2) \cdots (s - p_P)} </math> The roots of the numerator and denominator polynomials, {{math|''ΞΎ<sub>i</sub>''}} and {{math|''p<sub>i</sub>''}}, are the [[zeros and poles]] of the system. The bilinear transform is a [[one-to-one mapping]], hence these can be transformed to the z-domain using <math display=block> z = \frac{K + s}{K - s} </math> yielding some of the discretized transfer function's zeros and poles {{math|''ΞΎ'<sub>i</sub>''}} and {{math|''p'<sub>i</sub>''}} <math display=block> \begin{aligned} \xi'_i &= \frac{K + \xi_i}{K - \xi_i} \quad 1 \leq i \leq Q \\ p'_i &= \frac{K + p_i}{K - p_i} \quad 1 \leq i \leq P \end{aligned} </math> As described above, the degree of the numerator and denominator are now both {{math|''N''}}, in other words there is now an equal number of zeros and poles. The multiplication by {{math|(''z'' + 1)<sup>β''N''</sup>}} means the additional zeros or poles are <ref> {{cite web|url=http://www.ee.ic.ac.uk/hp/staff/dmb/courses/DSPDF/00800_TransIIR.pdf |last=Bhandari |first=Ayush |title=DSP and Digital Filters Lecture Notes |access-date=16 August 2022 |archive-url=https://web.archive.org/web/20220303144755/http://www.ee.ic.ac.uk/hp/staff/dmb/courses/DSPDF/00800_TransIIR.pdf |archive-date=3 March 2022}} </ref> <math display=block> \begin{aligned} \xi'_i &= -1 \quad Q < i \leq N \\ p'_i &= -1 \quad P < i \leq N \end{aligned} </math> Given the full set of zeros and poles, the z-domain transfer function is then <math display=block> H_d(z) = \frac{(z - \xi'_1)(z - \xi'_2) \cdots (z - \xi'_N)} {(z - p'_1)(z - p'_2) \cdots (z - p'_N)} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)