Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Borel–Kolmogorov paradox
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Mathematical explication == === Measure theoretic perspective === To understand the problem we need to recognize that a distribution on a continuous random variable is described by a density ''f'' only with respect to some measure ''μ''. Both are important for the full description of the probability distribution. Or, equivalently, we need to fully define the space on which we want to define ''f''. Let Φ and Λ denote two random variables taking values in Ω<sub>1</sub> = <math display="inline">\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]</math> respectively Ω<sub>2</sub> = [−{{pi}}, {{pi}}]. An event {Φ = ''φ'', Λ = ''λ''} gives a point on the sphere ''S''(''r'') with radius ''r''. We define the [[coordinate transform]] :<math>\begin{align} x &= r \cos \varphi \cos \lambda \\ y &= r \cos \varphi \sin \lambda \\ z &= r \sin \varphi \end{align}</math> for which we obtain the [[volume element]] :<math>\omega_r(\varphi,\lambda) = \left\| {\partial (x,y,z) \over \partial \varphi} \times {\partial (x,y,z) \over \partial \lambda} \right\| = r^2 \cos \varphi \ .</math> Furthermore, if either ''φ'' or ''λ'' is fixed, we get the volume elements :<math>\begin{align} \omega_r(\lambda) &= \left\| {\partial (x,y,z) \over \partial \varphi } \right\| = r \ , \quad\text{respectively} \\[3pt] \omega_r(\varphi) &= \left\| {\partial (x,y,z) \over \partial \lambda } \right\| = r \cos \varphi\ . \end{align}</math> Let :<math>\mu_{\Phi,\Lambda}(d\varphi, d\lambda) = f_{\Phi,\Lambda}(\varphi,\lambda) \omega_r(\varphi,\lambda) \, d\varphi \, d\lambda</math> denote the joint measure on <math>\mathcal{B}(\Omega_1 \times \Omega_2)</math>, which has a density <math>f_{\Phi,\Lambda}</math> with respect to <math>\omega_r(\varphi,\lambda) \, d\varphi \, d\lambda</math> and let :<math>\begin{align} \mu_\Phi(d\varphi) &= \int_{\lambda \in \Omega_2} \mu_{\Phi,\Lambda}(d\varphi, d\lambda)\ ,\\ \mu_\Lambda (d\lambda) &= \int_{\varphi \in \Omega_1} \mu_{\Phi,\Lambda}(d\varphi, d\lambda)\ . \end{align}</math> If we assume that the density <math>f_{\Phi,\Lambda}</math> is uniform, then :<math>\begin{align} \mu_{\Phi \mid \Lambda}(d\varphi \mid \lambda) &= {\mu_{\Phi,\Lambda}(d\varphi, d\lambda) \over \mu_\Lambda(d\lambda)} = \frac{1}{2r} \omega_r(\varphi) \, d\varphi \ , \quad\text{and} \\[3pt] \mu_{\Lambda \mid \Phi}(d\lambda \mid \varphi) &= {\mu_{\Phi,\Lambda}(d\varphi, d\lambda) \over \mu_\Phi(d\varphi)} = \frac{1}{2r\pi} \omega_r(\lambda) \, d\lambda \ . \end{align}</math> Hence, <math>\mu_{\Phi \mid \Lambda}</math> has a uniform density with respect to <math>\omega_r(\varphi) \, d\varphi</math> but not with respect to the [[Lebesgue measure]]. On the other hand, <math>\mu_{\Lambda \mid \Phi}</math> has a uniform density with respect to <math>\omega_r(\lambda) \, d\lambda</math> and the Lebesgue measure. === Proof of contradiction === {{Original research|paragraph|discuss=Talk:Borel–Kolmogorov_paradox#Error_in_"Mathematical_Explication"|date=March 2021}} Consider a random vector <math>(X,Y,Z)</math> that is uniformly distributed on the unit sphere <math>S^2</math>. We begin by parametrizing the sphere with the usual [[spherical polar coordinates]]: :<math>\begin{aligned} x &= \cos(\varphi) \cos (\theta) \\ y &= \cos(\varphi) \sin (\theta) \\ z &= \sin(\varphi) \end{aligned}</math> where <math display="inline">-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}</math> and <math>-\pi \le \theta \le \pi</math>. We can define random variables <math>\Phi</math>, <math>\Theta</math> as the values of <math>(X, Y, Z)</math> under the inverse of this parametrization, or more formally using the [[arctan2|arctan2 function]]: :<math>\begin{align} \Phi &= \arcsin(Z) \\ \Theta &= \arctan_2\left(\frac{Y}{\sqrt{1 - Z^2}}, \frac{X}{\sqrt{1 - Z^2}}\right) \end{align}</math> Using the formulas for the surface area [[spherical cap]] and the [[spherical wedge]], the surface of a spherical cap wedge is given by :<math> \operatorname{Area}(\Theta \le \theta, \Phi \le \varphi) = (1 + \sin(\varphi)) (\theta + \pi) </math> Since <math>(X,Y,Z)</math> is uniformly distributed, the probability is proportional to the surface area, giving the [[Joint probability distribution#Joint cumulative distribution function|joint cumulative distribution function]] :<math> F_{\Phi, \Theta}(\varphi, \theta) = P(\Theta \le \theta, \Phi \le \varphi) = \frac{1}{4\pi}(1 + \sin(\varphi)) (\theta + \pi) </math> The [[Joint probability distribution#Joint density function or mass function|joint probability density function]] is then given by :<math> f_{\Phi, \Theta}(\varphi, \theta) = \frac{\partial^2}{\partial \varphi \partial \theta} F_{\Phi, \Theta}(\varphi, \theta) = \frac{1}{4\pi} \cos(\varphi) </math> Note that <math>\Phi</math> and <math>\Theta</math> are independent random variables. For simplicity, we won't calculate the full conditional distribution on a great circle, only the probability that the random vector lies in the first octant. That is to say, we will attempt to calculate the conditional probability <math>\mathbb{P}(A|B)</math> with :<math>\begin{aligned} A &= \left\{ 0 < \Theta < \frac{\pi}{4} \right\} &&= \{ 0 < X < 1, 0 < Y < X \}\\ B &= \{ \Phi = 0 \} &&= \{ Z = 0 \} \end{aligned}</math> We attempt to evaluate the conditional probability as a limit of conditioning on the events :<math>B_\varepsilon = \{ | \Phi | < \varepsilon \}</math> As <math>\Phi</math> and <math>\Theta</math> are independent, so are the events <math>A</math> and <math>B_\varepsilon</math>, therefore :<math> P(A \mid B) \mathrel{\stackrel{?}{=}} \lim_{\varepsilon \to 0} \frac{P(A \cap B_\varepsilon)}{P(B_\varepsilon)} = \lim_{\varepsilon \to 0} P(A) = P \left(0 < \Theta < \frac{\pi}{4}\right) = \frac{1}{8}. </math> Now we repeat the process with a different parametrization of the sphere: :<math>\begin{align} x &= \sin(\varphi) \\ y &= \cos(\varphi) \sin(\theta) \\ z &= -\cos(\varphi) \cos(\theta) \end{align}</math> This is equivalent to the previous parametrization [[Rotation matrix#Basic rotations|rotated by 90 degrees around the y axis]]. Define new random variables :<math>\begin{align} \Phi' &= \arcsin(X) \\ \Theta' &= \arctan_2\left(\frac{Y}{\sqrt{1 - X^2}}, \frac{-Z}{\sqrt{1 - X^2}}\right). \end{align}</math> Rotation is [[measure-preserving transformation|measure preserving]] so the density of <math>\Phi'</math> and <math>\Theta'</math> is the same: :<math> f_{\Phi', \Theta'}(\varphi, \theta) = \frac{1}{4\pi} \cos(\varphi) </math>. The expressions for {{mvar|A}} and {{mvar|B}} are: :<math>\begin{align} A &= \left\{ 0 < \Theta < \frac{\pi}{4} \right\} &&= \{ 0 < X < 1,\ 0 < Y < X \} &&= \left\{ 0 < \Theta' < \pi,\ 0 < \Phi' < \frac{\pi}{2},\ \sin(\Theta') < \tan(\Phi') \right\} \\ B &= \{ \Phi = 0 \} &&= \{ Z = 0 \} &&= \left\{ \Theta' = -\frac{\pi}{2} \right\} \cup \left\{ \Theta' = \frac{\pi}{2} \right\}. \end{align}</math> Attempting again to evaluate the conditional probability as a limit of conditioning on the events :<math>B^\prime_\varepsilon = \left\{ \left|\Theta' + \frac{\pi}{2}\right| < \varepsilon \right\} \cup \left\{ \left|\Theta'-\frac{\pi}{2}\right| < \varepsilon \right\}.</math> Using [[L'Hôpital's rule]] and [[Leibniz integral rule|differentiation under the integral sign]]: :<math>\begin{align} P(A \mid B) &\mathrel{\stackrel{?}{=}} \lim_{\varepsilon \to 0} \frac{P(A \cap B^\prime_\varepsilon )}{P(B^\prime_\varepsilon )}\\ &= \lim_{\varepsilon \to 0} \frac{1}{\frac{4\varepsilon}{2\pi}}P\left( \frac{\pi}{2} - \varepsilon < \Theta' < \frac{\pi}{2} + \varepsilon,\ 0 < \Phi' < \frac{\pi}{2},\ \sin(\Theta') < \tan(\Phi') \right)\\ &= \frac{\pi}{2} \lim_{\varepsilon \to 0} \frac{\partial}{\partial \varepsilon} \int_{{\pi}/{2}-\epsilon}^{{\pi}/{2}+\epsilon} \int_0^{{\pi}/{2}} 1_{\sin(\theta) < \tan(\varphi)} f_{\Phi', \Theta'}(\varphi, \theta) \mathrm{d}\varphi \mathrm{d}\theta \\ &= \pi \int_0^{{\pi}/{2}} 1_{1 < \tan(\varphi)} f_{\Phi', \Theta'}\left(\varphi, \frac{\pi}{2}\right) \mathrm{d}\varphi \\ &= \pi \int_{\pi/4}^{\pi/2} \frac{1}{4 \pi} \cos(\varphi) \mathrm{d}\varphi \\ &= \frac{1}{4} \left( 1 - \frac{1}{\sqrt{2}} \right) \neq \frac{1}{8} \end{align}</math> This shows that the conditional density cannot be treated as conditioning on an event of probability zero, as explained in [[Conditional probability#Conditioning on an event of probability zero]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)