Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bruun's FFT algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cooley–Tukey as polynomial factorization=== The standard decimation-in-frequency (DIF) radix-''r'' Cooley–Tukey algorithm corresponds closely to a recursive factorization. For example, radix-2 DIF Cooley–Tukey factors <math>z^N-1</math> into <math>F_1 = (z^{N/2}-1)</math> and <math>F_2 = (z^{N/2}+1)</math>. These modulo operations reduce the degree of <math>x(z)</math> by 2, which corresponds to dividing the problem size by 2. Instead of recursively factorizing <math>F_2</math> directly, though, Cooley–Tukey instead first computes ''x''<sub>2</sub>(''z'' ω<sub>''N''</sub>), shifting all the roots (by a ''twiddle factor'') so that it can apply the recursive factorization of <math>F_1</math> to both subproblems. That is, Cooley–Tukey ensures that all subproblems are also DFTs, whereas this is not generally true for an arbitrary recursive factorization (such as Bruun's, below).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)