Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Indirect conditions === Since restricted transformations have no explicit time dependence (by definition), the time derivative of a new generalized coordinate {{math|''Q<sub>m</sub>''}} is <math display="block">\begin{align} \dot{Q}_{m} &= \frac{\partial Q_{m}}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} + \frac{\partial Q_{m}}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} \\ &= \frac{\partial Q_{m}}{\partial \mathbf{q}} \cdot \frac{\partial H}{\partial \mathbf{p}} - \frac{\partial Q_{m}}{\partial \mathbf{p}} \cdot \frac{\partial H}{\partial \mathbf{q}} \\ &= \lbrace Q_m , H \rbrace \end{align}</math><br /> where {{math|{β , β } }} is the [[Poisson bracket]]. Similarly for the identity for the conjugate momentum, ''P<sub>m</sub>'' using the form of the "Kamiltonian" it follows that: <math display="block">\begin{align} \frac{\partial K(\mathbf{Q}, \mathbf{P}, t)}{\partial P_{m}} &= \frac{\partial K(\mathbf{Q}(\mathbf{q}, \mathbf{p}), \mathbf{P}(\mathbf{q}, \mathbf{p}), t)}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial P_{m}} + \frac{\partial K(\mathbf{Q}(\mathbf{q}, \mathbf{p}), \mathbf{P}(\mathbf{q}, \mathbf{p}), t)}{\partial \mathbf{p}} \cdot \frac{\partial \mathbf{p}}{\partial P_{m}} \\[1ex] &= \frac{\partial H(\mathbf{q}, \mathbf{p}, t)}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial P_{m}} + \frac{\partial H(\mathbf{q}, \mathbf{p}, t)}{\partial \mathbf{p}} \cdot \frac{\partial \mathbf{p}}{\partial P_{m}} \\[1ex] &= \frac{\partial H}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial P_{m}} + \frac{\partial H}{\partial \mathbf{p}} \cdot \frac{\partial \mathbf{p}}{\partial P_{m}} \end{align}</math> Due to the form of the Hamiltonian equations of motion, <math display="block">\begin{align} \dot{\mathbf{P}} &= -\frac{\partial K}{\partial \mathbf{Q}}\\ \dot{\mathbf{Q}} &= \,\,\,\, \frac{\partial K}{\partial \mathbf{P}} \end{align}</math> if the transformation is canonical, the two derived results must be equal, resulting in the equations: <math display="block">\begin{align} \left( \frac{\partial Q_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= -\left( \frac{\partial q_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \\ \left( \frac{\partial Q_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= \left( \frac{\partial p_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \end{align}</math> The analogous argument for the generalized momenta ''P<sub>m</sub>'' leads to two other sets of equations: <math display="block">\begin{align} \left( \frac{\partial P_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= \left( \frac{\partial q_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \\ \left( \frac{\partial P_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= -\left( \frac{\partial p_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \end{align}</math> These are the '''indirect conditions''' to check whether a given transformation is canonical.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)