Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley–Hamilton theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== {{math|2 × 2}} matrices === As a concrete example, let <math display="block">A = \begin{pmatrix}1&2\\3&4\end{pmatrix}.</math> Its characteristic polynomial is given by <math display="block"> \begin{align} p(\lambda) &= \det(\lambda I_2-A) = \det\!\begin{pmatrix}\lambda-1&-2\\-3&\lambda-4\end{pmatrix} \\ &=(\lambda-1)(\lambda-4)-(-2)(-3)=\lambda^2-5\lambda-2. \end{align} </math> The Cayley–Hamilton theorem claims that, if we ''define'' <math display="block">p(X) = X^2 - 5X - 2I_2,</math> then <math display="block">p(A) = A^2-5A-2I_2 = \begin{pmatrix}0&0\\0&0\\\end{pmatrix}.</math> We can verify by computation that indeed, <math display="block">A^2-5A-2I_2 = \begin{pmatrix}7&10\\15&22\\\end{pmatrix} - \begin{pmatrix}5&10\\15&20\\\end{pmatrix} - \begin{pmatrix}2&0\\0&2\\\end{pmatrix} = \begin{pmatrix}0&0\\0&0\\\end{pmatrix}.</math> For a generic {{math|2 × 2}} matrix, <math display="block">A=\begin{pmatrix}a&b\\c&d\\\end{pmatrix} ,</math> the characteristic polynomial is given by {{math|1= ''p''(''λ'') = ''λ''<sup>2</sup> − (''a'' + ''d'')''λ'' + (''ad'' − ''bc'')}}, so the Cayley–Hamilton theorem states that <math display="block">p(A) = A^2-(a+d)A+(ad-bc)I_2 = \begin{pmatrix}0&0\\0&0\end{pmatrix};</math> which is indeed always the case, evident by working out the entries of {{math|''A''<sup>2</sup>}}. {{math proof|proof = <math display="block">\begin{align} &{} A^2-(a+d)A+(ad-bc)I_2 \\[1ex] &= \begin{pmatrix}a^2+bc&ab+bd\\ac+cd&bc+d^2\\\end{pmatrix} - \begin{pmatrix}a(a+d)&b(a+d)\\c(a+d)&d(a+d) \end{pmatrix}+(ad-bc)I_2 \\[1ex] &= \begin{pmatrix}bc-ad&0\\0&bc-ad\\\end{pmatrix}+(ad-bc)I_2 \\[1ex] &= \begin{pmatrix}0&0\\0&0 \end{pmatrix} \end{align}</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)