Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley–Purser algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Key generation === Like RSA, Cayley-Purser begins by generating two large primes ''p'' and ''q'' and their product ''n'', a [[semiprime]]. Next, consider [[general linear group|GL]](2,''n''), the [[general linear group]] of 2×2 matrices with integer elements and [[modular arithmetic]] mod ''n''. For example, if ''n''=5, we could write: :<math>\begin{bmatrix}0 & 1 \\ 2 & 3\end{bmatrix} + \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} = \begin{bmatrix}1 & 3 \\ 5 & 7\end{bmatrix} \equiv \begin{bmatrix}1 & 3 \\ 0 & 2\end{bmatrix}</math> :<math>\begin{bmatrix}0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} = \begin{bmatrix}3 & 4 \\ 11 & 16\end{bmatrix} \equiv \begin{bmatrix}3 & 4 \\ 1 & 1\end{bmatrix}</math> This group is chosen because it has large order (for large semiprime ''n''), equal to (''p''<sup>2</sup>−1)(''p''<sup>2</sup>−''p'')(''q''<sup>2</sup>−1)(''q''<sup>2</sup>−''q''). Let <math>\chi</math> and <math>\alpha</math> be two such matrices from GL(2,''n'') chosen such that <math>\chi\alpha \not= \alpha\chi</math>. Choose some natural number ''r'' and compute: :<math>\beta = \chi^{-1}\alpha^{-1}\chi,</math> :<math>\gamma = \chi^r.</math> The public key is <math>n</math>, <math>\alpha</math>, <math>\beta</math>, and <math>\gamma</math>. The private key is <math>\chi</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)