Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chirp
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Linear === [[File:LinearChirpMatlab.png|thumb|upright=1.5|[[Spectrogram]] of a linear chirp. The spectrogram plot demonstrates the linear rate of change in frequency as a function of time, in this case from 0 to 7 kHz, repeating every 2.3 seconds. The intensity of the plot is proportional to the energy content in the signal at the indicated frequency and time.]] {{Listen|filename=Linchirp.ogg|title=Linear chirp|description=Sound example for linear chirp (five repetitions)|format=[[Ogg]]}} In a '''linear-frequency chirp''' or simply '''linear chirp''', the instantaneous frequency <math>f(t)</math> varies exactly linearly with time: <math display="block">f(t) = c t + f_0,</math> where <math>f_0</math> is the starting frequency (at time <math>t = 0</math>) and <math>c</math> is the chirp rate, assumed constant: <math display="block">c = \frac{f_1 - f_0}{T} = \frac{\Delta f}{\Delta t}.</math> Here, <math>f_1</math> is the final frequency and <math> T </math> is the time it takes to sweep from <math> f_0 </math> to {{nowrap|<math>f_1</math>.}} The corresponding time-domain function for the [[Phase (waves)|phase]] of any oscillating signal is the integral of the frequency function, as one expects the phase to grow like <math>\phi(t + \Delta t) \simeq \phi(t) + 2\pi f(t)\,\Delta t</math>, i.e., that the derivative of the phase is the angular frequency <math>\phi'(t) = 2\pi\,f(t)</math>. For the linear chirp, this results in: <math display="block">\begin{align} \phi(t) &= \phi_0 + 2\pi\int_0^t f(\tau)\, d\tau\\ &= \phi_0 + 2\pi\int_0^t \left(c \tau+f_0\right)\, d\tau\\ &= \phi_0 + 2\pi \left(\frac{c}{2} t^2+f_0 t\right), \end{align}</math> where <math>\phi_0</math> is the initial phase (at time <math>t = 0</math>). Thus this is also called a '''quadratic-phase signal'''.<ref name="google">{{cite book|title=Fourier Methods in Imaging|author=Easton, R.L.| date=2010| publisher=Wiley| isbn=9781119991861|url=https://books.google.com/books?id=QuIHjnXQqM8C|page=703|access-date=2014-12-03}}</ref> The corresponding time-domain function for a [[sinusoidal]] linear chirp is the sine of the phase in radians: <math display="block">x(t) = \sin\left[\phi_0 + 2\pi \left(\frac{c}{2} t^2 + f_0 t \right) \right]</math> {{clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)