Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Combinatorial principles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inclusion–exclusion principle == [[File:Inclusion-exclusion.svg|thumb|Inclusion–exclusion illustrated for three sets]] {{main|Inclusion–exclusion principle}} The inclusion–exclusion principle relates the size of the union of multiple sets, the size of each set, and the size of each possible intersection of the sets. The smallest example is when there are two sets: the number of elements in the union of ''A'' and ''B'' is equal to the sum of the number of elements in ''A'' and ''B'', minus the number of elements in their intersection. Generally, according to this principle, if ''A''<sub>1</sub>, …, ''A<sub>n</sub>'' are finite sets, then :<math>\begin{align} \left|\bigcup_{i=1}^n A_i\right| & {} = \sum_{i=1}^n \left|A_i\right| -\sum_{i,j\,:\,1 \le i < j \le n} \left|A_i\cap A_j\right| \\ & {}\qquad +\sum_{i,j,k\,:\,1 \le i < j < k \le n} \left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)