Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Complete bipartite graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == {| class="wikitable skin-invert-image" align=right width=360 |+ Example {{math|''K''{{sub|''p'', ''p''}}}} complete bipartite graphs<ref>Coxeter, ''Regular Complex Polytopes'', second edition, p.114</ref> ! {{math|[[Thomsen graph|''K''{{sub|3,3}}]]}} ! {{math|''K''{{sub|4,4}}}} ! {{math|''K''{{sub|5,5}}}} |- |[[File:Complex polygon 2-4-3-bipartite graph.png|120px]] |[[File:Complex polygon 2-4-4 bipartite graph.png|120px]] |[[File:Complex polygon 2-4-5-bipartite graph.png|120px]] |- align=center |[[File:Complex polygon 2-4-3.png|120px]]<BR>3 edge-colorings |[[File:Complex polygon 2-4-4.png|120px]]<BR>4 edge-colorings |[[File:Complex polygon 2-4-5.png|120px]]<BR>5 edge-colorings |- |colspan=3|[[Regular complex polygon]]s of the form {{math|2{4}''p''}} have ''complete bipartite graphs'' with {{math|2''p''}} vertices (red and blue) and {{math|''p''{{sup|2}}}} 2-edges. They also can also be drawn as {{mvar|p}} edge-colorings. |} *Given a bipartite graph, testing whether it contains a complete bipartite subgraph {{math|''K''{{sub|''i'',''i''}}}} for a parameter {{mvar|i}} is an [[NP-complete]] problem.<ref>{{citation | last1=Garey | first1=Michael R. | author-link1=Michael R. Garey | last2=Johnson | first2=David S. | author-link2=David S. Johnson | contribution=[GT24] Balanced complete bipartite subgraph | page=[https://archive.org/details/computersintract0000gare/page/196 196] | year=1979 | title=[[Computers and Intractability: A Guide to the Theory of NP-Completeness]] | publisher=[[W. H. Freeman|W. H. Freeman]] | isbn=0-7167-1045-5 }}.</ref> *A [[planar graph]] cannot contain {{math|''K''{{sub|3,3}}}} as a [[minor (graph theory)|minor]]; an [[outerplanar graph]] cannot contain {{math|''K''{{sub|3,2}}}} as a minor (These are not [[sufficient condition]]s for planarity and outerplanarity, but necessary). Conversely, every nonplanar graph contains either {{math|''K''{{sub|3,3}}}} or the [[complete graph]] {{math|''K''{{sub|5}}}} as a minor; this is [[Wagner's theorem]].<ref>{{harvnb|Diestel|2005|p=105}}</ref> *Every complete bipartite graph. {{math|'''K'''{{sub|''n'',''n''}}}} is a [[Moore graph]] and a {{math|(''n'',4)}}-[[cage (graph theory)|cage]].<ref>{{citation|title=Algebraic Graph Theory|first=Norman|last=Biggs|publisher=Cambridge University Press|year=1993|isbn=9780521458979|page=181|url=https://books.google.com/books?id=6TasRmIFOxQC&pg=PA181}}.</ref> *The complete bipartite graphs {{math|'''K'''{{sub|''n'',''n''}}}} and {{math|'''K'''{{sub|''n'',''n''+1}}}} have the maximum possible number of edges among all [[triangle-free graph]]s with the same number of vertices; this is [[Mantel's theorem]]. Mantel's result was generalized to {{mvar|k}}-partite graphs and graphs that avoid larger [[Clique (graph theory)|cliques]] as subgraphs in [[Turán's theorem]], and these two complete bipartite graphs are examples of [[Turán graph]]s, the extremal graphs for this more general problem.<ref>{{citation|title=Modern Graph Theory|volume=184|series=[[Graduate Texts in Mathematics]]|first=Béla|last=Bollobás|author-link=Béla Bollobás|publisher=Springer|year=1998|isbn=9780387984889|page=104|url=https://books.google.com/books?id=SbZKSZ-1qrwC&pg=PA104}}.</ref> *The complete bipartite graph {{math|'''K'''{{sub|''m'',''n''}}}} has a [[vertex covering number]] of {{math|'''min'''{''m'', ''n''} }} and an [[edge covering number]] of {{math|'''max'''{''m'', ''n''}.}} *The complete bipartite graph {{math|'''K'''{{sub|''m'',''n''}}}} has a [[maximum independent set]] of size {{math|'''max'''{''m'', ''n''}.}} *The [[adjacency matrix]] of a complete bipartite graph {{math|'''K'''{{sub|''m'',''n''}}}} has eigenvalues {{math|{{radic|''nm''}}}}, {{math|−{{radic|''nm''}}}} and 0; with multiplicity 1, 1 and {{math|''n'' + ''m'' − 2}} respectively.<ref>{{harvtxt|Bollobás|1998}}, p. 266.</ref> *The [[Laplacian matrix]] of a complete bipartite graph {{math|'''K'''{{sub|''m'',''n''}}}} has eigenvalues {{math|''n'' + ''m''}}, {{mvar|n}}, {{mvar|m}}, and 0; with multiplicity 1, {{math|''m'' − 1}}, {{math|''n'' − 1}} and 1 respectively. *A complete bipartite graph {{math|'''K'''{{sub|''m'',''n''}}}} has {{math|''m''{{sup|''n''−1}} ''n''{{sup|''m''−1}}}} [[spanning tree]]s.<ref>{{citation|title=Graphs, Networks and Algorithms|volume=5|series=Algorithms and Computation in Mathematic|first=Dieter|last=Jungnickel|author-link=Dieter Jungnickel|publisher=Springer|year=2012|isbn=9783642322785|page=557|url=https://books.google.com/books?id=PrXxFHmchwcC&pg=PA557}}.</ref> *A complete bipartite graph {{math|'''K'''{{sub|''m'',''n''}}}} has a [[maximum matching]] of size {{math|'''min'''{''m'',''n''}.}} *A complete bipartite graph {{math|'''K'''{{sub|''n'',''n''}}}} has a proper [[edge coloring|{{mvar|n}}-edge-coloring]] corresponding to a [[Latin square]].<ref>{{citation|title=Graph Coloring Problems|volume=39|series=Wiley Series in Discrete Mathematics and Optimization|first1=Tommy R.|last1=Jensen|first2=Bjarne|last2=Toft|publisher=Wiley |year=2011|isbn=9781118030745|page=16|url=https://books.google.com/books?id=leL0Y5N0bFoC&pg=PA16}}.</ref> *Every complete bipartite graph is a [[modular graph]]: every triple of vertices has a median that belongs to shortest paths between each pair of vertices.<ref>{{citation | last1 = Bandelt | first1 = H.-J. | last2 = Dählmann | first2 = A. | last3 = Schütte | first3 = H. | doi = 10.1016/0166-218X(87)90058-8 | issue = 3 | journal = [[Discrete Applied Mathematics]] | mr = 878021 | pages = 191–215 | title = Absolute retracts of bipartite graphs | volume = 16 | year = 1987 | doi-access = free }}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)