Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Computational complexity theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Representing problem instances=== When considering computational problems, a problem instance is a [[string (computer science)|string]] over an [[Alphabet (computer science)|alphabet]]. Usually, the alphabet is taken to be the binary alphabet (i.e., the set {0,1}), and thus the strings are [[bitstring]]s. As in a real-world [[computer]], mathematical objects other than bitstrings must be suitably encoded. For example, [[integer]]s can be represented in [[binary notation]], and [[graph (discrete mathematics)|graph]]s can be encoded directly via their [[adjacency matrix|adjacency matrices]], or by encoding their [[adjacency list]]s in binary. Even though some proofs of complexity-theoretic theorems regularly assume some concrete choice of input encoding, one tries to keep the discussion abstract enough to be independent of the choice of encoding. This can be achieved by ensuring that different representations can be transformed into each other efficiently.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)