Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Concave function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Functions of a single variable=== # A [[differentiable function]] {{mvar|f}} is (strictly) concave on an [[interval (mathematics)|interval]] if and only if its [[derivative]] function {{mvar|f ′}} is (strictly) [[monotonically decreasing]] on that interval, that is, a concave function has a non-increasing (decreasing) [[slope]].<ref>{{Cite book| last=Rudin| first=Walter| title=Analysis| year=1976| pages= 101}}</ref><ref>{{Cite journal |last1=Gradshteyn|first1=I. S.| last2=Ryzhik|first2=I. M.| last3=Hays|first3=D. F.| date=1976-07-01| title=Table of Integrals, Series, and Products| journal=Journal of Lubrication Technology| volume=98|issue=3|pages=479| doi=10.1115/1.3452897|issn=0022-2305 |doi-access=free}}</ref> # [[Point (geometry)|Points]] where concavity changes (between concave and [[convex function|convex]]) are [[inflection point]]s.<ref>{{Cite book|last=Hass, Joel |url=https://www.worldcat.org/oclc/965446428| title=Thomas' calculus| others=Heil, Christopher, 1960-, Weir, Maurice D.,, Thomas, George B. Jr. (George Brinton), 1914-2006.|date=13 March 2017| isbn=978-0-13-443898-6| edition=Fourteenth| location=[United States]| pages=203| oclc=965446428}}</ref> # If {{mvar|f}} is twice-[[Differentiable function|differentiable]], then {{mvar|f}} is concave [[if and only if]] {{mvar|f ′′}} is [[non-positive]] (or, informally, if the "[[acceleration]]" is non-positive). If {{mvar|f ′′}} is [[negative numbers|negative]] then {{mvar|f}} is strictly concave, but the converse is not true, as shown by {{math|1=''f''(''x'') = −''x''<sup>4</sup>}}. # If {{mvar|f}} is concave and differentiable, then it is bounded above by its first-order [[Taylor approximation]]:<ref name=":0" /> <math display="block">f(y) \leq f(x) + f'(x)[y-x]</math> # A [[Lebesgue measurable function]] on an interval {{math|'''C'''}} is concave [[if and only if]] it is midpoint concave, that is, for any {{mvar|x}} and {{mvar|y}} in {{math|'''C'''}} <math display="block"> f\left( \frac{x+y}2 \right) \ge \frac{f(x) + f(y)}2</math> # If a function {{mvar|f}} is concave, and {{math|''f''(0) β₯ 0}}, then {{mvar|f}} is [[subadditivity|subadditive]] on <math>[0,\infty)</math>. Proof: #* Since {{mvar|f}} is concave and {{math|1 β₯ t β₯ 0}}, letting {{math|1=''y'' = 0}} we have <math display="block">f(tx) = f(tx+(1-t)\cdot 0) \ge t f(x)+(1-t)f(0) \ge t f(x) .</math> #* For <math>a,b\in[0,\infty)</math>: <math display="block">f(a) + f(b) = f \left((a+b) \frac{a}{a+b} \right) + f \left((a+b) \frac{b}{a+b} \right) \ge \frac{a}{a+b} f(a+b) + \frac{b}{a+b} f(a+b) = f(a+b)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)