Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Contact geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== It follows from the [[Frobenius theorem (differential topology)|Frobenius theorem on integrability]] that the contact field ''ξ'' is ''completely nonintegrable''. This property of the contact field is roughly the opposite of being a field formed from the tangent planes of a family of nonoverlapping hypersurfaces in ''M''. In particular, you cannot find a hypersurface in ''M'' whose tangent spaces agree with ''ξ'', even locally. In fact, there is no submanifold of dimension greater than ''k'' whose tangent spaces lie in ''ξ''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)