Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous functional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Further properties of the continuous functional calculus == The continuous functional calculus <math>\Phi_a</math> is an [[Isometry|isometric]] [[isomorphism]] into the C*-subalgebra <math>C^*(a,e)</math> generated by <math>a</math> and <math>e</math>, that is:{{sfn|Dixmier|1977|p=13}} * <math>\left\| \Phi_a(f) \right\| = \left\| f \right\|_{\sigma(a)}</math> for all <math>f \in C(\sigma(a))</math>; <math>\Phi_a</math> is therefore continuous. * <math>\Phi_a \left( C(\sigma(a)) \right) = C^*(a, e) \subseteq \mathcal{A}</math> Since <math>a</math> is a normal element of <math>\mathcal{A}</math>, the C*-subalgebra generated by <math>a</math> and <math>e</math> is commutative. In particular, <math>f(a)</math> is normal and all elements of a functional calculus {{nowrap|commutate.{{sfn|Dixmier|1977|pages=5,13}}}} The [[holomorphic functional calculus]] is [[Restriction (mathematics)#Extension of a function|extended]] by the continuous functional calculus in an unambiguous {{nowrap|way.{{sfn|Kaniuth|2009|p=147}}}} Therefore, for polynomials <math>p(z,\overline{z})</math> the continuous functional calculus corresponds to the natural functional calculus for polynomials: <math display="inline">\Phi_a(p(z, \overline{z})) = p(a, a^*) = \sum_{k,l=0}^N c_{k, l} a^k(a^*)^l</math> for all {{nowrap|<math display="inline">p(z, \overline{z}) = \sum_{k,l=0}^N c_{k,l} z^k\overline{z}^l</math> with <math>c_{k,l} \in \C</math>.{{sfn|Kadison|Ringrose|1983|p=272}}}} For a sequence of functions <math>f_n \in C(\sigma(a))</math> that converges uniformly on <math>\sigma(a)</math> to a function <math>f \in C(\sigma(a))</math>, <math>f_n(a)</math> converges to {{nowrap|<math>f(a)</math>.}}{{sfn|Blackadar|2006|p=62}} For a [[power series]] <math display="inline">f(z) = \sum_{n=0}^\infty c_n z^n</math>, which converges [[Absolute convergence|absolutely]] [[Uniform convergence|uniformly]] on <math>\sigma(a)</math>, therefore <math display="inline">f(a) = \sum_{n=0}^\infty c_na^n</math> {{nowrap|holds.{{sfn|Deitmar|Echterhoff|2014|p=55}}}} If <math>f \in \mathcal{C}(\sigma(a))</math> and <math>g\in \mathcal{ C}(\sigma(f(a)))</math>, then <math>(g \circ f)(a) = g(f(a))</math> holds for their {{nowrap|[[Function composition|composition]].{{sfn|Dixmier|1977|p=14}}}} If <math>a,b \in \mathcal{A}_N</math> are two normal elements with <math>f(a) = f(b)</math> and <math>g</math> is the [[inverse function]] of <math>f</math> on both <math>\sigma(a)</math> and <math>\sigma(b)</math>, then <math>a = b</math>, since {{nowrap|<math>a = (f \circ g) (a) = f(g(a)) = f(g(b)) = (f \circ g) (b) = b</math>.{{sfn|Kadison|Ringrose|1983|p=275}}}} The ''spectral mapping theorem'' applies: <math>\sigma(f(a)) = f(\sigma(a))</math> for all {{nowrap|<math>f \in C(\sigma(a))</math>.{{sfn|Dixmier|1977|p=13}}}} If <math>ab = ba</math> holds for <math>b \in \mathcal{A}</math>, then <math>f(a)b = bf(a)</math> also holds for all <math>f \in C ( \sigma (a))</math>, i.e. if <math>b</math> commutates with <math>a</math>, then also with the corresponding elements of the continuous functional calculus {{nowrap|<math>f(a)</math>.{{sfn|Kadison|Ringrose|1983|p=239}}}} Let <math>\Psi \colon \mathcal{A} \rightarrow \mathcal{B}</math> be an unital *-homomorphism between C*-algebras <math>\mathcal{A}</math> and {{nowrap|<math>\mathcal{B}</math>.}} Then <math>\Psi</math> commutates with the continuous functional calculus. The following holds: <math>\Psi(f(a)) = f(\Psi(a))</math> for all {{nowrap|<math>f \in C(\sigma(a))</math>.}} In particular, the continuous functional calculus commutates with the Gelfand {{nowrap|representation.{{sfn|Dixmier|1977|p=5,13}}}} With the spectral mapping theorem, functions with certain properties can be directly related to certain properties of elements of C*-algebras:{{sfn|Kadison|Ringrose|1983|p=271}} * <math>f(a)</math> is [[Inverse element|invertible]] if and only if <math>f</math> [[Zero of a function|has no zero]] on {{nowrap|<math>\sigma(a)</math>.{{sfn|Kaballo|2014|p=332}}}} Then <math display="inline">f(a)^{-1} = \tfrac{1}{f} (a)</math> {{nowrap|holds.{{sfn|Schmüdgen|2012|p=93}}}} * <math>f(a)</math> is [[self-adjoint]] if and only if <math>f</math> is [[Real-valued function|real-valued]], i.e. {{nowrap|<math>f(\sigma(a)) \subseteq \R</math>.}} * <math>f(a)</math> is [[Positive element|positive]] (<math>f(a) \geq 0</math>) if and only if <math>f \geq 0</math>, i.e. {{nowrap|<math>f(\sigma(a)) \subseteq [0,\infty )</math>.}} * <math>f(a)</math> is [[Unitary element|unitary]] if all values of <math>f</math> lie in the [[circle group]], i.e. {{nowrap|<math>f(\sigma(a)) \subseteq \mathbb{T} = \{ \lambda \in \C \mid \left\| \lambda \right\| = 1 \}</math>.}} * <math>f(a)</math> is a [[Projection (mathematics)|projection]] if <math>f</math> only takes on the values <math>0</math> and <math>1</math>, i.e. {{nowrap|<math>f(\sigma(a)) \subseteq \{ 0, 1 \}</math>.}} These are based on statements about the spectrum of certain elements, which are shown in the Applications section. In the special case that <math>\mathcal{A}</math> is the C*-algebra of bounded operators <math>\mathcal{B}(H)</math> for a Hilbert space <math>H</math>, [[Eigenvalues and eigenvectors|eigenvectors]] <math>v \in H</math> for the eigenvalue <math>\lambda \in \sigma(T)</math> of a normal operator <math>T \in \mathcal{B}(H)</math> are also eigenvectors for the eigenvalue <math>f(\lambda) \in \sigma(f(T))</math> of the operator {{nowrap|<math>f(T)</math>.}} If <math>Tv = \lambda v</math>, then <math>f(T)v = f(\lambda)v</math> also holds for all {{nowrap|<math>f \in \sigma(T)</math>.{{sfn|Reed|Simon|1980|p=222}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)