Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Controllability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Rank condition for controllability== The [[Controllability Gramian]] involves integration of the [[state-transition matrix]] of a system. A simpler condition for controllability is a [[rank (linear algebra)|rank]] condition analogous to the Kalman rank condition for time-invariant systems. Consider a continuous-time linear system <math>\Sigma</math> smoothly varying in an interval <math>[t_0,t]</math> of <math>\mathbb{R}</math>: : <math>\dot{\mathbf{x}}(t) = A(t) \mathbf{x}(t) + B(t) \mathbf{u}(t)</math> : <math>\mathbf{y}(t) = C(t) \mathbf{x}(t) + D(t) \mathbf{u}(t).</math> The state-transition matrix <math>\phi</math> is also smooth. Introduce the n x m matrix-valued function <math>M_0(t) = \phi(t_0,t)B(t)</math> and define : <math>M_k(t)</math> = <math>\frac{\mathrm{d^k} M_0}{\mathrm{d} t^k}(t), k\geqslant 1</math>. Consider the matrix of matrix-valued functions obtained by listing all the columns of the <math>M_i</math>, <math>i = 0,1, \ldots, k</math>: <math>M^{(k)}(t) := \left[M_0(t), \ldots, M_k(t)\right] </math>. If there exists a <math>\bar{t} \in [t_0,t]</math> and a nonnegative integer k such that <math>\operatorname{rank}M^{(k)}(\bar{t})=n</math>, then <math>\Sigma</math> is controllable.<ref name=":0">Eduardo D. Sontag, [https://books.google.com/books?id=f9XiBwAAQBAJ Mathematical Control Theory: Deterministic Finite Dimensional Systems].</ref> If <math>\Sigma</math> is also analytically varying in an interval <math>[t_0,t]</math>, then <math>\Sigma</math> is controllable on every nontrivial subinterval of <math>[t_0,t]</math> if and only if there exists a <math>\bar{t} \in [t_0,t]</math> and a nonnegative integer k such that <math>\operatorname{rank}M^{(k)}(t_i)=n</math>.<ref name=":0" /> The above methods can still be complex to check, since it involves the computation of the state-transition matrix <math>\phi</math>. Another equivalent condition is defined as follow. Let <math>B_0(t) = B(t)</math>, and for each <math>i \geq 0</math>, define : <math>B_{i+1}(t) </math>= <math>A(t)B_i(t) - \frac{\mathrm{d}}{\mathrm{d} t}B_i(t). </math> In this case, each <math>B_i</math> is obtained directly from the data <math> (A(t),B(t)).</math> The system is controllable if there exists a <math>\bar{t} \in [t_0,t]</math> and a nonnegative integer <math>k</math> such that <math>\textrm{rank}( \left[ B_0(\bar{t}), B_1(\bar{t}), \ldots, B_k(\bar{t}) \right]) = n </math>.<ref name=":0" /> === Example === Consider a system varying analytically in <math> (-\infty,\infty) </math> and matrices <math>A(t) = \begin{bmatrix} t & 1 & 0\\ 0 & t^{3} & 0\\ 0 & 0 & t^{2} \end{bmatrix}</math>, <math>B(t) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.</math> Then <math> [B_0(0),B_1(0),B_2(0),B_3(0)] = \begin{bmatrix} 0 & 1 & 0 &-1\\ 1 & 0 & 0&0\\ 1 & 0 & 0&2 \end{bmatrix}</math> and since this matrix has rank 3, the system is controllable on every nontrivial interval of <math>\mathbb{R}</math>. === Continuous linear time-invariant (LTI) systems === Consider the continuous linear [[time-invariant system]] : <math>\dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B \mathbf{u}(t)</math> : <math>\mathbf{y}(t) = C \mathbf{x}(t) + D \mathbf{u}(t)</math> where : <math>\mathbf{x}</math> is the <math>n \times 1</math> "state vector", : <math>\mathbf{y}</math> is the <math>m \times 1</math> "output vector", : <math>\mathbf{u}</math> is the <math>r \times 1</math> "input (or control) vector", : <math>A</math> is the <math>n \times n</math> "state matrix", : <math>B</math> is the <math>n \times r</math> "input matrix", : <math>C</math> is the <math>m \times n</math> "output matrix", : <math>D</math> is the <math>m \times r</math> "feedthrough (or feedforward) matrix". The <math>n \times nr</math> controllability matrix is given by :<math>R = \begin{bmatrix}B & AB & A^{2}B & ...& A^{n-1}B\end{bmatrix}</math> The system is controllable if the controllability matrix has full row [[Rank (linear algebra)|rank]] (i.e. <math>\operatorname{rank}(R)=n</math>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)