Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coprime integers
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Coprimality in sets == <!-- [[Coprime set]] redirects here --> A [[Set (mathematics)|set]] of integers <math>S=\{a_1,a_2, \dots, a_n\}</math> can also be called ''coprime'' or ''setwise coprime'' if the [[greatest common divisor]] of all the elements of the set is 1. For example, the integers 6, 10, 15 are coprime because 1 is the only positive integer that divides all of them. If every pair in a set of integers is coprime, then the set is said to be ''pairwise coprime'' (or ''pairwise relatively prime'', ''mutually coprime'' or ''mutually relatively prime''). Pairwise coprimality is a stronger condition than setwise coprimality; every pairwise coprime finite set is also setwise coprime, but the reverse is not true. For example, the integers 4, 5, 6 are (setwise) coprime (because the only positive integer dividing ''all'' of them is 1), but they are not ''pairwise'' coprime (because {{math|1=gcd(4, 6) = 2}}). The concept of pairwise coprimality is important as a hypothesis in many results in number theory, such as the [[Chinese remainder theorem]]. It is possible for an [[infinite set]] of integers to be pairwise coprime. Notable examples include the set of all prime numbers, the set of elements in [[Sylvester's sequence]], and the set of all [[Fermat numbers]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)