Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Correlation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Sample correlation coefficient=== Given a series of <math>n</math> measurements of the pair <math>(X_i,Y_i)</math> indexed by <math>i=1,\ldots,n</math>, the ''sample correlation coefficient'' can be used to estimate the population Pearson correlation <math>\rho_{X,Y}</math> between <math>X</math> and <math>Y</math>. The sample correlation coefficient is defined as :<math> r_{xy} \quad \overset{\underset{\mathrm{def}}{}}{=} \quad \frac{\sum\limits_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})}{(n-1)s_x s_y} =\frac{\sum\limits_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})} {\sqrt{\sum\limits_{i=1}^n (x_i-\bar{x})^2 \sum\limits_{i=1}^n (y_i-\bar{y})^2}}, </math> where <math>\overline{x}</math> and <math>\overline{y}</math> are the sample [[arithmetic mean|means]] of <math>X</math> and <math>Y</math>, and <math>s_x</math> and <math>s_y</math> are the [[Standard deviation#Corrected sample standard deviation|corrected sample standard deviations]] of <math>X</math> and <math>Y</math>. Equivalent expressions for <math>r_{xy}</math> are :<math> \begin{align} r_{xy} &=\frac{\sum x_iy_i-n \bar{x} \bar{y}}{n s'_x s'_y} \\[5pt] &=\frac{n\sum x_iy_i-\sum x_i\sum y_i}{\sqrt{n\sum x_i^2-(\sum x_i)^2}~\sqrt{n\sum y_i^2-(\sum y_i)^2}}. \end{align} </math> where <math>s'_x</math> and <math>s'_y</math> are the [[Standard deviation#Uncorrected sample standard deviation|''uncorrected'' sample standard deviations]] of <math>X</math> and <math>Y</math>. If <math>x</math> and <math>y</math> are results of measurements that contain measurement error, the realistic limits on the correlation coefficient are not β1 to +1 but a smaller range.<ref>{{cite journal|last=Francis|first=DP|author2=Coats AJ|author3=Gibson D|title=How high can a correlation coefficient be?|journal=Int J Cardiol|year=1999|volume=69|pages=185β199|doi=10.1016/S0167-5273(99)00028-5|issue=2|pmid=10549842}}</ref> For the case of a linear model with a single independent variable, the [[Coefficient of determination|coefficient of determination (R squared)]] is the square of <math>r_{xy}</math>, Pearson's product-moment coefficient.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)