Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cotangent bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == The tangent bundle of the vector space <math>\mathbb{R}^n</math> is <math>T\,\mathbb{R}^n = \mathbb{R}^n\times \mathbb{R}^n</math>, and the cotangent bundle is <math>T^*\mathbb{R}^n = \mathbb{R}^n\times (\mathbb{R}^n)^*</math>, where <math>(\mathbb{R}^n)^*</math> denotes the [[dual space]] of covectors, linear functions <math>v^*:\mathbb{R}^n\to \mathbb{R}</math>. Given a smooth manifold <math>M\subset \mathbb{R}^n</math> embedded as a [[hypersurface]] represented by the vanishing locus of a function <math>f\in C^\infty (\mathbb{R}^n),</math> with the condition that <math>\nabla f \neq 0,</math> the tangent bundle is :<math>TM = \{(x,v) \in T\,\mathbb{R}^n \ :\ f(x) = 0,\ \, df_x(v) = 0\},</math> where <math>df_x \in T^*_xM</math> is the [[directional derivative]] <math>df_x(v) = \nabla\! f(x)\cdot v</math>. By definition, the cotangent bundle in this case is :<math>T^*M = \bigl\{(x,v^*)\in T^*\mathbb{R}^n \ :\ f(x)=0,\ v^* \in T^*_xM \bigr\},</math> where <math>T^*_xM=\{v \in T_x\mathbb{R}^n\ :\ df_x(v)=0\}^*.</math> Since every covector <math>v^* \in T^*_xM</math> corresponds to a unique vector <math>v \in T_xM</math> for which <math>v^*(u) = v \cdot u,</math> for an arbitrary <math>u \in T_xM,</math> :<math>T^*M = \bigl\{(x,v^*)\in T^*\mathbb{R}^n\ :\ f(x) = 0,\ v \in T_x\mathbb{R}^n,\ df_x(v)=0 \bigr\}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)