Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Creatine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Phosphocreatine system=== [[File:Creatine kinase and phosphocreatine energy shuttle.png|thumb|464x464px|class=skin-invert-image|Proposed creatine kinase/phosphocreatine (CK/PCr) energy shuttle. CRT = creatine transporter; ANT = adenine nucleotide translocator; ATP = adenine triphosphate; ADP = adenine diphosphate; OP = oxidative phosphorylation; mtCK = mitochondrial creatine kinase; G = glycolysis; CK-g = creatine kinase associated with glycolytic enzymes; CK-c = cytosolic creatine kinase; CK-a = creatine kinase associated with subcellular sites of ATP utilization; 1 β 4 sites of CK/ATP interaction.]] Creatine is transported through the blood and taken up by tissues with high energy demands, such as the brain and skeletal muscle, through an active transport system. The concentration of [[adenosine triphosphate|ATP]] in skeletal muscle is usually 2β5 mM, which would result in a muscle contraction of only a few seconds.<ref name="ncbi.nlm.nih.gov">{{cite journal | vauthors = Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM | title = Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis | journal = The Biochemical Journal | volume = 281 ( Pt 1) | issue = Pt 1 | pages = 21β40 | date = January 1992 | pmid = 1731757 | pmc = 1130636 | doi = 10.1042/bj2810021 }}</ref> During times of increased energy demands, the [[phosphagen]] (or ATP/PCr) system rapidly resynthesizes ATP from [[adenosine diphosphate|ADP]] with the use of [[phosphocreatine]] (PCr) through a reversible reaction catalysed by the enzyme [[creatine kinase]] (CK). The phosphate group is attached to an NH center of the creatine. In skeletal muscle, PCr concentrations may reach 20β35 mM or more. Additionally, in most muscles, the ATP regeneration capacity of CK is very high and is therefore not a limiting factor. Although the cellular concentrations of ATP are small, changes are difficult to detect because ATP is continuously and efficiently replenished from the large pools of PCr and CK.<ref name="ncbi.nlm.nih.gov" /> A proposed representation has been illustrated by Krieder et al.<ref name=":3" /> Creatine has the ability to increase muscle stores of PCr, potentially increasing the muscle's ability to resynthesize ATP from ADP to meet increased energy demands.<ref>{{cite journal | vauthors = Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS | title = The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels | journal = Journal of the International Society of Sports Nutrition | volume = 6 | issue = 1 | pages = 6 | date = February 2009 | pmid = 19228401 | pmc = 2649889 | doi = 10.1186/1550-2783-6-6 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Wallimann T, Tokarska-Schlattner M, Schlattner U | title = The creatine kinase system and pleiotropic effects of creatine | journal = Amino Acids | volume = 40 | issue = 5 | pages = 1271β96 | date = May 2011 | pmid = 21448658 | pmc = 3080659 | doi = 10.1007/s00726-011-0877-3 }}.</ref><ref>T. Wallimann, M. Tokarska-Schlattner, D. Neumann u. a.: ''The Phosphocreatine Circuit: Molecular and Cellular Physiology of Creatine Kinases, Sensitivity to Free Radicals, and Enhancement by Creatine Supplementation.'' In: ''Molecular System Bioenergetics: Energy for Life.'' 22. November 2007. {{doi|10.1002/9783527621095.ch7}}C</ref> Creatine supplementation appears to increase the number of [[myonuclei]] that satellite cells will 'donate' to damaged [[muscle fiber]]s, which increases the potential for growth of those fibers. This increase in myonuclei probably stems from creatine's ability to increase levels of the myogenic transcription factor MRF4.<ref>{{cite journal | vauthors = Hespel P, Eijnde BO, Derave W, Richter EA | title = Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle | journal = Canadian Journal of Applied Physiology | volume = 26 Suppl | pages = S79-102 | year = 2001 | pmid = 11897886 | doi = 10.1139/h2001-045 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)