Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cunningham Project
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Aurifeuillean factors=== {{main|Aurifeuillean factorization}} When the number is of a particular form (the exact expression varies with the base), aurifeuillean factorization may be used, which gives a product of two or three numbers. The following equations give aurifeuillean factors for the Cunningham project bases as a product of ''F'', ''L'' and ''M'':<ref>{{cite web|title=Main Cunningham Tables|url=https://homes.cerias.purdue.edu/~ssw/cun/pmain125.txt|accessdate=15 January 2025}} At the end of tables 2LM, 3+, 5-, 6+, 7+, 10+, 11+ and 12+ there are formulae detailing the aurifeuillean factorizations.</ref> Let ''b'' = ''s''<sup>2</sup>{{times}}''k'' with [[squarefree]] ''k'', if one of the conditions holds, then <math>\Phi_n(b)</math> have aurifeuillean factorization. : (i) <math>k\equiv 1 \pmod 4</math> and <math>n\equiv k \pmod{2k};</math> : (ii) <math>k\equiv 2, 3 \pmod 4</math> and <math>n\equiv 2k \pmod{4k}.</math> {{table alignment}} {| class="wikitable col2right col3right col4center col5center" !''b'' !Number !''F'' !''L'' !''M'' !Other definitions |- !2 |2<sup>4''k''+2</sup> + 1 |1 |2<sup>2{{itco|''k''}}+1</sup> β 2<sup>{{itco|''k''}}+1</sup> + 1 |2<sup>2{{itco|''k''}}+1</sup> + 2<sup>{{itco|''k''}}+1</sup> + 1 | |- !3 |3<sup>6''k''+3</sup> + 1 |3<sup>2{{itco|''k''}}+1</sup> + 1 |3<sup>2{{itco|''k''}}+1</sup> β 3<sup>{{itco|''k''}}+1</sup> + 1 |3<sup>2{{itco|''k''}}+1</sup> + 3<sup>{{itco|''k''}}+1</sup> + 1 | |- !5 |5<sup>10''k''+5</sup> β 1 |5<sup>2{{itco|''k''}}+1</sup> β 1 |{{itco|''T''}}<sup>2</sup> β 5<sup>{{itco|''k''}}+1</sup>''T'' + 5<sup>2{{itco|''k''}}+1</sup> |{{itco|''T''}}<sup>2</sup> + 5<sup>{{itco|''k''}}+1</sup>''T'' + 5<sup>2{{itco|''k''}}+1</sup> |''T'' = 5<sup>2{{itco|''k''}}+1</sup> + 1 |- !6 |6<sup>12''k''+6</sup> + 1 |6<sup>4''k''+2</sup> + 1 |{{itco|''T''}}<sup>2</sup> β 6<sup>{{itco|''k''}}+1</sup>''T'' + 6<sup>2{{itco|''k''}}+1</sup> |{{itco|''T''}}<sup>2</sup> + 6<sup>{{itco|''k''}}+1</sup>''T'' + 6<sup>2{{itco|''k''}}+1</sup> |''T'' = 6<sup>2{{itco|''k''}}+1</sup> + 1 |- !7 |7<sup>14''k''+7</sup> + 1 |7<sup>2{{itco|''k''}}+1</sup> + 1 |''A'' β ''B'' |''A'' + ''B'' |''A'' = 7<sup>6''k''+3</sup> + 3(7<sup>4''k''+2</sup>) + 3(7<sup>2{{itco|''k''}}+1</sup>) + 1<br/>''B'' = 7<sup>5''k''+3</sup> + 7<sup>3''k''+2</sup> + 7<sup>{{itco|''k''}}+1</sup> |- !10 |10<sup>20{{itco|''k''}}+10</sup> + 1 |10<sup>4''k''+2</sup> + 1 |''A'' β ''B'' |''A'' + ''B'' |''A'' = 10<sup>8''k''+4</sup> + 5(10<sup>6''k''+3</sup>) + 7(10<sup>4''k''+2</sup>) + 5(10<sup>2{{itco|''k''}}+1</sup>) + 1<br/>''B'' = 10<sup>7''k''+4</sup> + 2(10<sup>5''k''+3</sup>) + 2(10<sup>3''k''+2</sup>) + 10<sup>{{itco|''k''}}+1</sup> |- !11 |11<sup>22{{itco|''k''}}+11</sup> + 1 |11<sup>2{{itco|''k''}}+1</sup> + 1 |''A'' β ''B'' |''A'' + ''B'' |''A'' = 11<sup>10''k''+5</sup> + 5(11<sup>8''k''+4</sup>) β 11<sup>6''k''+3</sup> β 11<sup>4''k''+2</sup> + 5(11<sup>2{{itco|''k''}}+1</sup>) + 1<br/>''B'' = 11<sup>9''k''+5</sup> + 11<sup>7''k''+4</sup> β 11<sup>5''k''+3</sup> + 11<sup>3''k''+2</sup> + 11<sup>{{itco|''k''}}+1</sup> |- !12 |12<sup>6''k''+3</sup> + 1 |12<sup>2{{itco|''k''}}+1</sup> + 1 |12<sup>2{{itco|''k''}}+1</sup> β 6(12<sup>''k''</sup>) + 1 |12<sup>2{{itco|''k''}}+1</sup> + 6(12<sup>''k''</sup>) + 1 | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)