Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Debye model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Another derivation == First the [[vibrational frequency]] distribution is derived from Appendix VI of Terrell L. Hill's ''An Introduction to Statistical Mechanics''.<ref>{{cite book|last1=Hill|first1=Terrell L.|title=An Introduction to Statistical Mechanics|date=1960|publisher=Addison-Wesley Publishing Company, Inc.|location=Reading, Massachusetts, U.S.A.|isbn=9780486652429|url-access=registration|url=https://archive.org/details/introductiontost0000hill}}</ref> Consider a [[Three-dimensional space|three-dimensional]] [[Isotropy|isotropic]] [[elastic solid]] with N atoms in the shape of a [[rectangular parallelepiped]] with side-lengths <math>L_x, L_y, L_z</math>. The [[Elastic Wave|elastic wave]] will obey the [[wave equation]] and will be [[plane waves]]; consider the [[wave vector]] <math>\mathbf{k} = (k_x, k_y, k_z)</math> and define <math>l_x=\frac{k_x}{|\mathbf{k}|}, l_y=\frac{k_y}{|\mathbf{k}|}, l_z=\frac{k_z}{|\mathbf{k}|}</math>, such that {{NumBlk|:|<math> l_x^2 + l_y^2 + l_z^2 = 1.</math>|{{EquationRef|1}}}} Solutions to the [[wave equation]] are :<math> u(x,y,z,t) = \sin(2\pi\nu t)\sin\left(\frac{2\pi l_x x}{\lambda}\right)\sin\left(\frac{2\pi l_y y}{\lambda}\right)\sin\left(\frac{2\pi l_z z}{\lambda}\right) </math> and with the [[boundary conditions]] <math>u=0</math> at <math>x,y,z=0, x=L_x, y=L_y, z=L_z</math>, {{NumBlk|:|<math> \frac{2l_xL_x}{\lambda}=n_x; \frac{2l_yL_y}{\lambda}=n_y; \frac{2l_zL_z}{\lambda}=n_z </math>|{{EquationRef|2}}}} where <math>n_x,n_y,n_z</math> are [[positive integers]]. Substituting ({{EquationNote|2}}) into ({{EquationNote|1}}) and also using the [[dispersion relation]] <math>c_s=\lambda\nu</math>, :<math> \frac{n_x^2}{(2\nu L_x/c_s)^2} + \frac{n_y^2}{(2\nu L_y/c_s)^2} + \frac{n_z^2}{(2\nu L_z/c_s)^2} = 1. </math> The above equation, for fixed [[frequency]] <math>\nu</math>, describes an eighth of an ellipse in "mode space" (an eighth because <math>n_x,n_y,n_z</math> are positive). The number of modes with frequency less than <math>\nu</math> is thus the number of integral points inside the ellipse, which, in the limit of <math>L_x,L_y,L_z \to\infty</math> (i.e. for a very large parallelepiped) can be approximated to the volume of the ellipse. Hence, the number of modes <math>N(\nu)</math> with frequency in the range <math>[0,\nu]</math> is {{NumBlk|:|<math> N(\nu) = \frac{1}{8}\frac{4\pi}{3}\left(\frac{2\nu}{c_{\mathrm{s}}}\right)^3L_xL_yL_z = \frac{4\pi\nu^3V}{3c_{\mathrm{s}}^3},</math>|{{EquationRef|3}}}} where <math>V=L_xL_yL_z</math> is the volume of the parallelepiped. The wave speed in the longitudinal direction is different from the transverse direction and that the waves can be polarised one way in the longitudinal direction and two ways in the transverse direction and ca be defined as <math>\frac{3}{c_s^3} = \frac{1}{c_\text{long}^3} + \frac{2}{c_\text{trans}^3}</math>. Following the derivation from ''A First Course in Thermodynamics'',<ref>{{cite book|last1=Oberai|first1=M. M.|last2=Srikantiah|first2=G|title=A First Course in Thermodynamics | date=1974|publisher=Prentice-Hall of India Private Limited|location=New Delhi, India|isbn=9780876920183}}</ref> an upper limit to the frequency of vibration is defined <math>\nu_D</math>; since there are <math>N</math> atoms in the solid, there are <math>3N</math> quantum harmonic oscillators (3 for each x-, y-, z- direction) oscillating over the range of frequencies <math>[0,\nu_D]</math>. <math> \nu_D </math> can be determined using {{NumBlk|:|<math> 3N = N(\nu_{\rm D}) = \frac{4\pi\nu_{\rm D}^3V}{3c_{\rm s}^3} </math>.|{{EquationRef|4}}}} By defining <math>\nu_{\rm D} = \frac{kT_{\rm D}}{h}</math>, where ''k'' is the [[Boltzmann constant]] and ''h'' is the [[Planck constant]], and substituting ({{EquationNote|4}}) into ({{EquationNote|3}}), {{NumBlk|:|<math> N(\nu) = \frac{3Nh^3\nu^3}{k^3T_{\rm D}^3},</math>|{{EquationRef|5}}}}this definition is more standard; the energy contribution for all [[Oscillation|oscillators]] oscillating at [[frequency]] <math>\nu</math> can be found. [[Quantum harmonic oscillator]]s can have energies <math>E_i = (i+1/2)h\nu</math> where <math>i = 0,1,2,\dotsc</math> and using [[Maxwell-Boltzmann statistics]], the number of particles with energy <math>E_i</math> is :<math>n_i=\frac{1}{A}e^{-E_i/(kT)}=\frac{1}{A}e^{-(i+1/2)h\nu/(kT)}.</math> The energy contribution for [[Oscillation|oscillators]] with frequency <math>\nu</math> is then {{NumBlk|:|<math> dU(\nu) = \sum_{i=0}^\infty E_i\frac{1}{A}e^{-E_i/(kT)}</math>.|{{EquationRef|6}}}} By noting that <math>\sum_{i=0}^\infty n_i = dN(\nu)</math> (because there are <math>dN(\nu)</math> modes oscillating with [[frequency]] <math>\nu</math>), :<math>\frac{1}{A}e^{-1/2h\nu/(kT)}\sum_{i=0}^\infty e^{-ih\nu/(kT)} = \frac{1}{A}e^{-1/2h\nu/(kT)}\frac{1}{1-e^{-h\nu/(kT)}} = dN(\nu) .</math> From above, we can get an expression for 1/A; substituting it into ({{EquationNote|6}}), :<math>\begin{align} dU &= dN(\nu)e^{1/2h\nu/(kT)}(1-e^{-h\nu/(kT)})\sum_{i=0}^\infty h\nu(i+1/2)e^{-h\nu(i+1/2)/(kT)} \\ \\ &=dN(\nu)(1-e^{-h\nu/(kT)})\sum_{i=0}^\infty h\nu(i+1/2)e^{-h\nu i/(kT)} \\ &=dN(\nu)h\nu\left(\frac{1}{2}+(1-e^{-h\nu/(kT)})\sum_{i=0}^\infty ie^{-h\nu i/(kT)}\right) \\ &=dN(\nu)h\nu\left(\frac{1}{2}+\frac{1}{e^{h\nu/(kT)}-1}\right). \end{align}</math> Integrating with respect to Ξ½ yields :<math>U = \frac{9Nh^4}{k^3T_{\rm D}^3}\int_0^{\nu_D}\left(\frac{1}{2}+\frac{1}{e^{h\nu/(kT)}-1}\right)\nu^3 d\nu.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)