Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac comb
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Fourier series == {{see also|Dirichlet kernel}} It is clear that <math>\operatorname{\text{Ш}}_{\ T}(t)</math> is periodic with period <math>T</math>. That is, <math display="block">\operatorname{\text{Ш}}_{\ T}(t + T) = \operatorname{\text{Ш}}_{\ T}(t)</math> for all ''t''. The complex Fourier series for such a periodic function is <math display="block"> \operatorname{\text{Ш}}_{\ T}(t) = \sum_{n=-\infty}^{+\infty} c_n e^{i 2 \pi n \frac{t}{T}}, </math> where (using [[Distribution_(mathematics)|distribution theory]]) the Fourier coefficients are <math display="block">\begin{align} c_n &= \frac{1}{T} \int_{t_0}^{t_0 + T} \operatorname{\text{Ш}}_{\ T}(t) e^{-i 2 \pi n \frac{t}{T}}\, dt \quad ( -\infty < t_0 < +\infty ) \\ &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \operatorname{\text{Ш}}_{\ T}(t) e^{-i 2 \pi n \frac{t}{T}}\, dt \\ &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-i 2 \pi n \frac{t}{T}}\, dt \\ &= \frac{1}{T} e^{-i 2 \pi n \frac{0}{T}} \\ &= \frac{1}{T}. \end{align}</math> All Fourier coefficients are 1/''T'' resulting in <math display="block">\operatorname{\text{Ш}}_{\ T}(t) = \frac{1}{T}\sum_{n=-\infty}^{\infty} \!\!e^{i 2 \pi n \frac{t}{T}}.</math> When the period is one unit, this simplifies to <math display="block">\operatorname{\text{Ш}}\ \!(x) = \sum_{n=-\infty}^{\infty} \!\!e^{i 2 \pi n x}.</math> This is a [[divergent series]], when understood as a series of ordinary complex numbers, but becomes convergent in the sense of [[distribution (mathematics)|distributions]]. A "square root" of the Dirac comb is employed in some applications to physics, specifically:<ref>{{Cite book |last=Schleich |first=Wolfgang |title=Quantum optics in phase space |date=2001 |publisher=Wiley-VCH |isbn=978-3-527-29435-0 |edition=1st |pages=683–684}}</ref><math display="block">\delta_N^{(1 / 2)}(\xi) = \frac{1}{\sqrt{NT}} \sum_{\nu=0}^{N-1} e^{-i \frac{2\pi}{T}\xi \nu}, \quad \lim_{N \rightarrow \infty}\left|\delta_N^{(1 / 2)}(\xi)\right|^2= \sum_{k=-\infty}^{\infty} \delta(\xi - kT).</math> However this is not a distribution in the ordinary sense.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)