Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet L-function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Functional equation== Dirichlet ''L''-functions satisfy a [[functional equation]], which provides a way to analytically continue them throughout the complex plane. The functional equation relates the value of <math>L(s,\chi)</math> to the value of <math>L(1-s, \overline{\chi})</math>. Let ''Ο'' be a primitive character modulo ''q'', where ''q'' > 1. One way to express the functional equation is:<ref name="MontgomeryVaughan333" /> :<math>L(s,\chi) = W(\chi) 2^s \pi^{s-1} q^{1/2-s} \sin \left( \frac{\pi}{2} (s + \delta) \right) \Gamma(1-s) L(1-s, \overline{\chi}).</math> In this equation, Ξ denotes the [[gamma function]]; :<math>\chi(-1)=(-1)^{\delta}</math> ; and :<math>W(\chi) = \frac{\tau(\chi)}{i^{\delta} \sqrt{q}}</math> where ''Ο''{{hairsp}}({{hairsp}}''Ο'') is a [[Gauss sum]]: :<math>\tau(\chi) = \sum_{a=1}^q \chi(a)\exp(2\pi ia/q).</math> It is a property of Gauss sums that |''Ο''{{hairsp}}({{hairsp}}''Ο''){{hairsp}}| = ''q''<sup>1/2</sup>, so |''W''{{hairsp}}({{hairsp}}''Ο''){{hairsp}}| = 1.<ref name="MontgomeryVaughan332">{{harvnb|Montgomery|Vaughan|2006|p=332}}</ref><ref name="IwaniecKowalski84">{{harvnb|Iwaniec|Kowalski|2004|p=84}}</ref> Another way to state the functional equation is in terms of :<math>\Lambda(s,\chi) = q ^{s/2} \pi^{-(s+\delta)/2} \operatorname{\Gamma}\left(\frac{s+\delta}{2}\right) L(s,\chi).</math> The functional equation can be expressed as:<ref name="MontgomeryVaughan333" /><ref name="IwaniecKowalski84" /> :<math>\Lambda(s,\chi) = W(\chi) \Lambda(1-s,\overline{\chi}).</math> The functional equation implies that <math>L(s,\chi)</math> (and <math>\Lambda(s,\chi)</math>) are [[entire function|entire functions]] of ''s''. (Again, this assumes that ''Ο'' is primitive character modulo ''q'' with ''q'' > 1. If ''q'' = 1, then <math>L(s,\chi) = \zeta(s)</math> has a pole at ''s'' = 1.)<ref name="MontgomeryVaughan333">{{harvnb|Montgomery|Vaughan|2006|p=333}}</ref><ref name="IwaniecKowalski84" /> For generalizations, see: [[Functional equation (L-function)]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)