Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Elementary facts == 4) Since <math>\gcd(1,m)=1,</math> property 2) says <math>\chi(1)\ne 0</math> so it can be canceled from both sides of <math>\chi(1)\chi(1)=\chi(1\times 1) =\chi(1)</math>: :<math>\chi(1)=1.</math><ref>These properties are derived in all introductions to the subject, e.g. Davenport p. 27, Landau p. 109.</ref> 5) Property 3) is equivalent to :if <math>a \equiv b \pmod{m}</math> then <math>\chi(a) =\chi(b).</math> 6) Property 1) implies that, for any positive integer <math>n</math> :<math>\chi(a^n)=\chi(a)^n.</math> 7) [[Euler's theorem]] states that if <math>(a,m)=1</math> then <math>a^{\phi(m)}\equiv 1 \pmod{m}.</math> Therefore, :<math>\chi(a)^{\phi(m)}=\chi(a^{\phi(m)})=\chi(1)=1.</math> That is, the nonzero values of <math>\chi(a)</math> are <math>\phi(m)</math>-th [[root of unity|roots of unity]]: :<math> \chi(a)= \begin{cases} 0 &\text{if } \gcd(a,m)>1\\ \zeta_{\phi(m)}^r&\text{if } \gcd(a,m)=1 \end{cases}</math> for some integer <math>r</math> which depends on <math>\chi, \zeta,</math> and <math>a</math>. This implies there are only a finite number of characters for a given modulus. 8) If <math>\chi</math> and <math>\chi'</math> are two characters for the same modulus so is their product <math>\chi\chi',</math> defined by pointwise multiplication: :<math>\chi\chi'(a) = \chi(a)\chi'(a)</math> (<math>\chi\chi'</math> obviously satisfies 1-3).<ref>In general, the product of a character mod <math>m</math> and a character mod <math>n</math> is a character mod <math>\operatorname{lcm}(m,n)</math></ref> The principal character is an identity: :<math> \chi\chi_0(a)=\chi(a)\chi_0(a)= \begin{cases} 0 \times 0 &=\chi(a)&\text{if } \gcd(a,m)>1\\ \chi(a)\times 1&=\chi(a) &\text{if } \gcd(a,m)=1. \end{cases}</math> 9) Let <math>a^{-1}</math> denote the inverse of <math>a</math> in <math>(\mathbb{Z}/m\mathbb{Z})^\times</math>. Then :<math>\chi(a)\chi(a^{-1})=\chi(aa^{-1})=\chi(1)=1, </math> so <math>\chi(a^{-1})=\chi(a)^{-1},</math> which extends 6) to all integers. The [[complex conjugate]] of a root of unity is also its inverse (see [[root of unity#Elementary properties|here]] for details), so for <math>(a,m)=1</math> :<math>\overline{\chi}(a)=\chi(a)^{-1}=\chi(a^{-1}). </math> (<math>\overline\chi</math> also obviously satisfies 1-3). Thus for all integers <math>a</math> :<math> \chi(a)\overline{\chi}(a)= \begin{cases} 0 &\text{if } \gcd(a,m)>1\\ 1 &\text{if } \gcd(a,m)=1 \end{cases}; </math> in other words <math>\chi\overline{\chi}=\chi_0</math>. 10) The multiplication and identity defined in 8) and the inversion defined in 9) turn the set of Dirichlet characters for a given modulus into a [[abelian group#Finite abelian groups|finite abelian group]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)