Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet convolution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties and examples== In these formulas, we use the following [[arithmetical function]]s: * <math>\varepsilon</math> is the multiplicative identity: <math>\varepsilon(1) = 1</math>, otherwise 0 (<math>\varepsilon(n)=\lfloor \tfrac1n \rfloor</math>). * <math>1</math> is the constant function with value 1: <math>1(n) = 1</math> for all <math>n</math>. Keep in mind that <math>1</math> is not the identity. (Some authors [[Incidence algebra#Special_elements|denote this]] as <math>\zeta</math> because the associated Dirichlet series is the [[Riemann zeta function]].) * <math>1_C</math> for <math>C \subset \mathbb{N}</math> is a set [[indicator function]]: <math>1_C(n) = 1</math> iff <math>n \in C</math>, otherwise 0. *<math>\text{Id}</math> is the identity function with value ''n'': <math>\text{Id}(n) = n</math>. *<math>\text{Id}_k</math> is the ''k''th power function: <math>\text{Id}_k(n)=n^k</math>. The following relations hold: * <math>1 * \mu = \varepsilon</math>, the Dirichlet inverse of the constant function <math>1</math> is the [[Möbius function]] (see [[Möbius_function#Proof_of_the_formula_for_the_sum_of_μ_over_divisors|proof]]). Hence: *<math>g = f * 1</math> if and only if <math>f = g * \mu</math>, the [[Möbius inversion formula]]. *<math>\sigma_k = \text{Id}_k * 1</math>, the [[divisor function|kth-power-of-divisors sum function]] ''σ''<sub>''k''</sub>. *<math>\sigma = \text{Id} * 1</math>, the sum-of-divisors function {{nowrap|1=''σ'' = ''σ''<sub>1</sub>}}. *<math>\tau = 1 * 1</math> , the number-of-divisors function {{nowrap|1=''τ''(''n'') = ''σ''<sub>0</sub>}}. *<math>\text{Id}_k = \sigma_k * \mu</math>, by Möbius inversion of the formulas for ''σ''<sub>''k''</sub>, ''σ'', and ''τ''. *<math>\text{Id} = \sigma * \mu</math> *<math>1 = \tau * \mu</math> *<math>\phi * 1 = \text{Id}</math> , proved under [[Euler's totient function#Divisor sum|Euler's totient function]]. *<math>\phi = \text{Id} * \mu</math> , by Möbius inversion. *<math>\sigma = \phi * \tau</math> , from convolving 1 on both sides of <math>\phi * 1 = \text{Id}</math>. *<math>\lambda * |\mu| = \varepsilon</math> where ''λ'' is [[Liouville's function]]. *<math>\text{Id} * \phi = P </math>, where <math> P </math> is [[Pillai's arithmetical function]], also known as the gcd-sum function. *<math>\lambda * 1 = 1_{\text{Sq}}</math> where Sq = {1, 4, 9, ...} is the set of squares. *<math>\text{Id}_k * (\text{Id}_k \mu) = \varepsilon </math> *<math>\tau^3 * 1 = (\tau * 1)^2</math> *<math>J_k * 1 = \text{Id}_k</math>, [[Jordan's totient function]]. *<math>(\text{Id}_s J_r) * J_s = J_{s + r} </math> *<math>\Lambda * 1 = \log</math>, where <math>\Lambda</math> is [[von Mangoldt function|von Mangoldt's function]]. *<math>|\mu| \ast 1 = 2^{\omega},</math> where <math>\omega(n)</math> is the [[prime omega function]] counting ''distinct'' prime factors of ''n''. *<math>\Omega \ast \mu = 1_{\mathcal{P}}</math>, the characteristic function of the prime powers. *<math>\omega \ast \mu = 1_{\mathbb{P}}</math> where <math>1_{\mathbb{P}}(n) \mapsto \{0,1\}</math> is the characteristic function of the primes. This last identity shows that the [[prime-counting function]] is given by the summatory function :<math>\pi(x) = \sum_{n \leq x} (\omega \ast \mu)(n) = \sum_{d=1}^{x} \omega(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right)</math> where <math>M(x)</math> is the [[Mertens function]] and <math>\omega</math> is the distinct prime factor counting function from above. This expansion follows from the identity for the sums over Dirichlet convolutions given on the [[divisor sum identities]] page (a standard trick for these sums).<ref>{{cite book|title=Apostol's Introduction to Analytic Number Theory|last1=Schmidt |first1=Maxie}} This identity is a little special something I call "croutons". It follows from several chapters worth of exercises in Apostol's classic book.</ref> <!-- * ''μ'' ∗ 1 = ''ε'' ∗ (''μ'' ∗ Id<sub>''k''</sub>) ∗ Id<sub>''k''</sub> = ''ε'' (generalized Möbius inversion) -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)