Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discretization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Derivation === Starting with the continuous model <math display=block>\mathbf{\dot{x}}(t) = \mathbf{Ax}(t) + \mathbf{Bu}(t)</math> we know that the [[matrix exponential]] is <math display=block>\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t} = e^{\mathbf{A}t} \mathbf A</math> and by premultiplying the model we get <math display=block>e^{-\mathbf{A}t} \mathbf{\dot{x}}(t) = e^{-\mathbf{A}t} \mathbf{Ax}(t) + e^{-\mathbf{A}t} \mathbf{Bu}(t)</math> which we recognize as <math display=block>\frac{d}{dt}\Bigl[e^{-\mathbf{A}t}\mathbf x(t) \Bigr] = e^{-\mathbf{A}t} \mathbf{Bu}(t)</math> and by integrating, <math display=block>\begin{align} e^{-\mathbf{A}t}\mathbf{x}(t) - e^0\mathbf{x}(0) &= \int_0^t e^{-\mathbf{A}\tau} \mathbf{Bu}(\tau) d\tau \\[2pt] \mathbf{x}(t) &= e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{Bu}(\tau) d\tau \end{align}</math> which is an analytical solution to the continuous model. Now we want to discretise the above expression. We assume that {{mvar|u}} is [[mathematical constant|constant]] during each timestep. <math display=block>\begin{align} \mathbf x[k] &\, \stackrel{\mathrm{def}}{=}\ \mathbf x(kT) \\[6pt] \mathbf x[k] &= e^{\mathbf{A}kT}\mathbf x(0) + \int_0^{kT} e^{\mathbf A(kT-\tau)} \mathbf{Bu}(\tau) d\tau \\[4pt] \mathbf x[k+1] &= e^{\mathbf A(k+1)T}\mathbf x(0) + \int_0^{(k+1)T} e^{\mathbf A[(k+1)T-\tau]} \mathbf{Bu}(\tau) d \tau \\[2pt] \mathbf x[k+1] &= e^{\mathbf{A}T} \left[ e^{\mathbf{A}kT}\mathbf x(0) + \int_0^{kT} e^{\mathbf A(kT-\tau)} \mathbf{Bu}(\tau) d \tau \right]+ \int_{kT}^{(k+1)T} e^{\mathbf A(kT+T-\tau)} \mathbf B\mathbf u(\tau) d\tau \end{align}</math> We recognize the bracketed expression as <math>\mathbf x[k]</math>, and the second term can be simplified by substituting with the function <math>v(\tau) = kT + T - \tau</math>. Note that <math>d\tau=-dv</math>. We also assume that {{math|'''u'''}} is constant during the [[integral]], which in turn yields <math display=block>\begin{align} \mathbf x[k+1] &= e^{\mathbf{A}T}\mathbf x[k] - \left( \int_{v(kT)}^{v((k+1)T)} e^{\mathbf{A}v} dv \right) \mathbf{Bu}[k] \\[2pt] &= e^{\mathbf{A}T}\mathbf x[k] - \left( \int_T^0 e^{\mathbf{A}v} dv \right) \mathbf{Bu}[k] \\[2pt] &= e^{\mathbf{A}T}\mathbf x[k] + \left( \int_0^T e^{\mathbf{A}v} dv \right) \mathbf{Bu}[k] \\[4pt] &= e^{\mathbf{A}T}\mathbf x[k] + \mathbf A^{-1}\left(e^{\mathbf{A}T} - \mathbf I \right) \mathbf{Bu}[k] \end{align}</math> which is an exact solution to the discretization problem. When {{math|'''A'''}} is singular, the latter expression can still be used by replacing <math> e^{\mathbf{A}T} </math> by its [[Taylor series|Taylor expansion]], <math display=block> e^{\mathbf{A}T} = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A}T)^k .</math> This yields <math display=block>\begin{align} \mathbf x[k+1] &= e^{\mathbf{A}T}\mathbf x[k] + \left( \int_0^T e^{\mathbf{A}v} dv \right) \mathbf{Bu}[k] \\[2pt] &= \left(\sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A}T)^k\right) \mathbf x[k] + \left(\sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{A}^{k-1} T^k\right) \mathbf{Bu}[k], \end{align}</math> which is the form used in practice.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)