Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dissipative system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Dissipative systems in control theory == [[Jan Camiel Willems|Willems]] first introduced the concept of dissipativity in systems theory<ref>{{cite journal |last1=Willems |first1=J.C. |title=Dissipative dynamical systems part 1: General theory |journal=Arch. Rational Mech. Anal. |date=1972 |volume=45 |issue=5 |page=321 |doi=10.1007/BF00276493 |bibcode=1972ArRMA..45..321W |hdl=10338.dmlcz/135639 |s2cid=123076101 |url=https://homes.esat.kuleuven.be/~sistawww/smc/jwillems/Articles/JournalArticles/1972.1.pdf }}</ref> to describe dynamical systems by input-output properties. Considering a dynamical system described by its state <math> x(t) </math>, its input <math>u(t)</math> and its output <math>y(t)</math>, the input-output correlation is given a supply rate <math> w(u(t),y(t))</math>. A system is said to be dissipative with respect to a supply rate if there exists a continuously differentiable storage function <math> V(x(t))</math> such that <math>V(0)=0</math>, <math>V(x(t))\ge 0 </math> and :<math> \dot{V}(x(t)) \le w(u(t),y(t))</math>.<ref>{{cite book |last1=Arcak |first1=Murat |last2=Meissen |first2=Chris |last3=Packard |first3=Andrew |title=Networks of Dissipative Systems |date=2016 |publisher=Springer International Publishing |isbn=978-3-319-29928-0 }}</ref> As a special case of dissipativity, a system is said to be passive if the above dissipativity inequality holds with respect to the passivity supply rate <math> w(u(t),y(t)) = u(t)^Ty(t) </math>. The physical interpretation is that <math>V(x)</math> is the energy stored in the system, whereas <math>w(u(t),y(t))</math> is the energy that is supplied to the system. This notion has a strong connection with [[Lyapunov stability]], where the storage functions may play, under certain conditions of controllability and observability of the dynamical system, the role of Lyapunov functions. Roughly speaking, dissipativity theory is useful for the design of feedback control laws for linear and nonlinear systems. Dissipative systems theory has been discussed by [[Vasile M. Popov|V.M. Popov]], [[Jan Camiel Willems|J.C. Willems]], D.J. Hill, and P. Moylan. In the case of linear invariant systems{{clarify|reason=Is this the same as a "linear time-invariant system" as in the Wikipedia articles "LTI system theory"?|date=April 2015}}, this is known as positive real transfer functions, and a fundamental tool is the so-called [[Kalman–Yakubovich–Popov lemma]] which relates the state space and the frequency domain properties of positive real systems{{clarify|reason=What is a positive real system?|date=April 2015}}.<ref>{{cite book|url=https://www.springer.com/978-1-84628-892-0|title=Process Control - The Passive Systems Approach| last1=Bao| first1=Jie| last2=Lee| first2=Peter L.| author-link2=Peter Lee (engineer)| publisher=[[Springer Science+Business Media|Springer-Verlag London]]|year=2007|doi=10.1007/978-1-84628-893-7|isbn=978-1-84628-892-0}}</ref> Dissipative systems are still an active field of research in systems and control, due to their important applications.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)