Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions of test functions and distributions== In this section, some basic notions and definitions needed to define real-valued distributions on {{mvar|U}} are introduced. Further discussion of the topologies on the spaces of test functions and distributions is given in the article on [[spaces of test functions and distributions]]. {{block indent|em=1.5|text='''Notation''': # Let <math>k \in \{0, 1, 2, \ldots, \infty\}.</math> # Let <math>C^k(U)</math> denote the [[vector space]] of all {{mvar|k}}-times [[continuously differentiable]] real or complex-valued functions on {{mvar|U}}. # For any compact subset <math>K \subseteq U,</math> let <math>C^k(K)</math> and <math>C^k(K;U)</math> both denote the vector space of all those functions <math>f \in C^k(U)</math> such that <math>\operatorname{supp}(f) \subseteq K.</math> #* If <math>f \in C^k(K)</math> then the domain of <math>f</math> is {{mvar|U}} and not {{mvar|K}}. So although <math>C^k(K)</math> depends on both {{mvar|K}} and {{mvar|U}}, only {{mvar|K}} is typically indicated. The justification for this common practice is [[#Omitting the open set from notation|detailed below]]. The notation <math>C^k(K;U)</math> will only be used when the notation <math>C^k(K)</math> risks being ambiguous. #* Every <math>C^k(K)</math> contains the constant {{math|0}} map, even if <math>K = \varnothing.</math> # Let <math>C_c^k(U)</math> denote the set of all <math>f \in C^k(U)</math> such that <math>f \in C^k(K)</math> for some compact subset {{mvar|K}} of {{mvar|U}}. #* Equivalently, <math>C_c^k(U)</math> is the set of all <math>f \in C^k(U)</math> such that <math>f</math> has compact [[#support of a function|support]]. #* <math>C_c^k(U)</math> is equal to the union of all <math>C^k(K)</math> as <math>K \subseteq U</math> ranges over all compact subsets of <math>U.</math> #* If <math>f</math> is a real-valued function on <math>U</math>, then <math>f</math> is an element of <math>C_c^k(U)</math> if and only if <math>f</math> is a <math>C^k</math> [[bump function]]. Every real-valued test function on <math>U</math> is also a complex-valued test function on <math>U.</math> }} [[File:Bump.png|thumb|350x350px|The graph of the [[bump function]] <math>(x,y) \in \R^2 \mapsto \Psi(r),</math> where <math>r = \left(x^2 + y^2\right)^\frac{1}{2}</math> and <math>\Psi(r) = e^{-\frac{1}{1 - r^2}}\cdot\mathbf{1}_{\{|r|<1\}}.</math> This function is a test function on <math>\R^2</math> and is an element of <math>C^\infty_c\left(\R^2\right).</math> The [[#support of a function|support]] of this function is the closed [[unit disk]] in <math>\R^2.</math> It is non-zero on the open unit disk and it is equal to {{math|0}} everywhere outside of it.]] For all <math>j, k \in \{0, 1, 2, \ldots, \infty\}</math> and any compact subsets <math>K</math> and <math>L</math> of <math>U</math>, we have: <math display=block>\begin{align} C^k(K) &\subseteq C^k_c(U) \subseteq C^k(U) \\ C^k(K) &\subseteq C^k(L) && \text{if } K \subseteq L \\ C^k(K) &\subseteq C^j(K) && \text{if } j \le k \\ C_c^k(U) &\subseteq C^j_c(U) && \text{if } j \le k \\ C^k(U) &\subseteq C^j(U) && \text{if } j \le k \\ \end{align}</math> {{block indent|em=1.5|text='''Definition''': Elements of <math>C_c^\infty(U)</math> are called '''{{em|test functions}}''' on {{mvar|U}} and <math>C_c^\infty(U)</math> is called the '''{{em|space of test functions}}''' on {{mvar|U}}. We will use both <math>\mathcal{D}(U)</math> and <math>C_c^\infty(U)</math> to denote this space.}} Distributions on {{mvar|U}} are [[continuous linear functional]]s on <math>C_c^\infty(U)</math> when this vector space is endowed with a particular topology called the '''{{em|canonical LF-topology}}'''. The following proposition states two necessary and sufficient conditions for the continuity of a linear function on <math>C_c^\infty(U)</math> that are often straightforward to verify. '''Proposition''': A [[Linear form|linear functional]] {{mvar|T}} on <math>C_c^\infty(U)</math> is continuous, and therefore a '''{{em|distribution}}''', if and only if any of the following equivalent conditions is satisfied: # For every compact subset <math>K\subseteq U</math> there exist constants <math>C>0</math> and <math>N\in \N</math> (dependent on <math>K</math>) such that for all <math>f \in C_c^\infty(U)</math> with [[#support of a function|support]] contained in <math>K</math>,{{sfn|Trèves|2006|pp=222-223}}<ref>{{harvnb|Grubb|2009|page=14}}</ref> <math display="block">|T(f)| \leq C \sup \{|\partial^\alpha f(x)|: x \in U, |\alpha| \leq N\}.</math> # For every compact subset <math>K\subseteq U</math> and every sequence <math>\{f_i\}_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> whose supports are contained in <math>K</math>, if <math>\{\partial^\alpha f_i\}_{i=1}^\infty</math> converges uniformly to zero on <math>U</math> for every [[multi-index]] <math>\alpha</math>, then <math>T(f_i) \to 0.</math> ===Topology on ''C''<sup>''k''</sup>(''U'')=== We now introduce the [[seminorm]]s that will define the topology on <math>C^k(U).</math> Different authors sometimes use different families of seminorms so we list the most common families below. However, the resulting topology is the same no matter which family is used. {{block indent|em=1.5|text=Suppose <math>k \in \{0, 1, 2, \ldots, \infty\}</math> and <math>K</math> is an arbitrary compact subset of <math>U.</math> Suppose <math>i</math> is an integer such that <math>0 \leq i \leq k</math><ref group=note>Note that <math>i</math> being an integer implies <math>i \neq \infty.</math> This is sometimes expressed as <math>0 \leq i < k + 1.</math> Since <math>\infty + 1 = \infty,</math> the inequality "<math>0 \leq i < k + 1</math>" means: <math>0 \leq i < \infty</math> if <math>k = \infty,</math> while if <math>k \neq \infty</math> then it means <math>0 \leq i \leq k.</math></ref> and <math>p</math> is a multi-index with length <math>| p|\leq k.</math> For <math>K \neq \varnothing</math> and <math>f \in C^k(U),</math> define: <math display=block>\begin{alignat}{4} \text{ (1) }\ & s_{p,K}(f) &&:= \sup_{x_0 \in K} \left| \partial^p f(x_0) \right| \\[4pt] \text{ (2) }\ & q_{i,K}(f) &&:= \sup_{|p| \leq i} \left(\sup_{x_0 \in K} \left| \partial^p f(x_0) \right|\right) = \sup_{|p| \leq i} \left(s_{p, K}(f)\right) \\[4pt] \text{ (3) }\ & r_{i,K}(f) &&:= \sup_{\stackrel{|p| \leq i}{x_0 \in K}} \left| \partial^p f(x_0) \right| \\[4pt] \text{ (4) }\ & t_{i,K}(f) &&:= \sup_{x_0 \in K} \left(\sum_{|p| \leq i} \left| \partial^p f(x_0) \right|\right) \end{alignat}</math> while for <math>K = \varnothing,</math> define all the functions above to be the constant {{math|0}} map. }} All of the functions above are non-negative <math>\R</math>-valued<ref group="note">The image of the [[compact set]] <math>K</math> under a continuous <math>\R</math>-valued map (for example, <math>x \mapsto \left|\partial^p f(x)\right|</math> for <math>x \in U</math>) is itself a compact, and thus bounded, subset of <math>\R.</math> If <math>K \neq \varnothing</math> then this implies that each of the functions defined above is <math>\R</math>-valued (that is, none of the [[Infimum and supremum|supremums]] above are ever equal to <math>\infty</math>).</ref> [[seminorm]]s on <math>C^k(U).</math> As explained in [[Locally convex topological vector space#Definition via seminorms|this article]], every set of seminorms on a vector space induces a [[Locally convex topological vector space|locally convex]] [[Topological vector space|vector topology]]. Each of the following sets of seminorms <math display=block>\begin{alignat}{4} A ~:= \quad &\{q_{i,K} &&: \;K \text{ compact and } \;&&i \in \N \text{ satisfies } \;&&0 \leq i \leq k\} \\ B ~:= \quad &\{r_{i,K} &&: \;K \text{ compact and } \;&&i \in \N \text{ satisfies } \;&&0 \leq i \leq k\} \\ C ~:= \quad &\{t_{i,K} &&: \;K \text{ compact and } \;&&i \in \N \text{ satisfies } \;&&0 \leq i \leq k\} \\ D ~:= \quad &\{s_{p,K} &&: \;K \text{ compact and } \;&&p \in \N^n \text{ satisfies } \;&&|p| \leq k\} \end{alignat}</math> generate the same [[Locally convex topological vector space|locally convex]] [[Topological vector space|vector topology]] on <math>C^k(U)</math> (so for example, the topology generated by the seminorms in <math>A</math> is equal to the topology generated by those in <math>C</math>). {{block indent|em=1.5|text=The vector space <math>C^k(U)</math> is endowed with the [[Locally convex topological vector space|locally convex]] topology induced by any one of the four families <math>A, B, C, D</math> of seminorms described above. This topology is also equal to the vector topology induced by {{em|all}} of the seminorms in <math>A \cup B \cup C \cup D.</math>}} With this topology, <math>C^k(U)</math> becomes a locally convex [[Fréchet space]] that is {{em|not}} [[Normable space|normable]]. Every element of <math>A \cup B \cup C \cup D</math> is a continuous seminorm on <math>C^k(U).</math> Under this topology, a [[net (mathematics)|net]] <math>(f_i)_{i\in I}</math> in <math>C^k(U)</math> converges to <math>f \in C^k(U)</math> if and only if for every multi-index <math>p</math> with <math>|p|< k + 1</math> and every compact <math>K,</math> the net of partial derivatives <math>\left(\partial^p f_i\right)_{i \in I}</math> [[Uniform convergence|converges uniformly]] to <math>\partial^p f</math> on <math>K.</math>{{sfn|Trèves|2006|pp=85-89}} For any <math>k \in \{0, 1, 2, \ldots, \infty\},</math> any [[Bounded set (topological vector space)|(von Neumann) bounded subset]] of <math>C^{k+1}(U)</math> is a [[relatively compact]] subset of <math>C^k(U).</math>{{sfn|Trèves|2006|pp=142-149}} In particular, a subset of <math>C^\infty(U)</math> is bounded if and only if it is bounded in <math>C^i(U)</math> for all <math>i \in \N.</math>{{sfn|Trèves|2006| pp=142-149}} The space <math>C^k(U)</math> is a [[Montel space]] if and only if <math>k = \infty.</math>{{sfn|Trèves|2006|pp=356-358}} A subset <math>W</math> of <math>C^\infty(U)</math> is open in this topology if and only if there exists <math>i\in \N</math> such that <math>W</math> is open when <math>C^\infty(U)</math> is endowed with the [[subspace topology]] induced on it by <math>C^i(U).</math> ====Topology on ''C''<sup>''k''</sup>(''K'')==== As before, fix <math>k \in \{0, 1, 2, \ldots, \infty\}.</math> Recall that if <math>K</math> is any compact subset of <math>U</math> then <math>C^k(K) \subseteq C^k(U).</math> {{block indent|em=1.5|text='''Assumption''': For any compact subset <math>K \subseteq U,</math> we will henceforth assume that <math>C^k(K)</math> is endowed with the [[subspace topology]] it inherits from the [[Fréchet space]] <math>C^k(U).</math>}} If <math>k</math> is finite then <math>C^k(K)</math> is a [[Banach space]]{{sfn|Trèves|2006|pp=131-134}} with a topology that can be defined by the [[Norm (mathematics)|norm]] <math display=block>r_K(f) := \sup_{|p|<k} \left( \sup_{x_0 \in K} \left|\partial^p f(x_0)\right| \right).</math> ====Trivial extensions and independence of ''C''<sup>''k''</sup>(''K'')'s topology from ''U''==== {{anchor|Omitting the open set from notation}} Suppose <math>U</math> is an open subset of <math>\R^n</math> and <math>K \subseteq U</math> is a compact subset. By definition, elements of <math>C^k(K)</math> are functions with domain <math>U</math> (in symbols, <math>C^k(K) \subseteq C^k(U)</math>), so the space <math>C^k(K)</math> and its topology depend on <math>U;</math> to make this dependence on the open set <math>U</math> clear, temporarily denote <math>C^k(K)</math> by <math>C^k(K;U).</math> Importantly, changing the set <math>U</math> to a different open subset <math>U'</math> (with <math>K \subseteq U'</math>) will change the set <math>C^k(K)</math> from <math>C^k(K;U)</math> to <math>C^k(K;U'),</math><ref group="note">Exactly as with <math>C^k(K;U),</math> the space <math>C^k(K; U')</math> is defined to be the vector subspace of <math>C^k(U')</math> consisting of maps with [[#support of a function|support]] contained in <math>K</math> endowed with the subspace topology it inherits from <math>C^k(U')</math>.</ref> so that elements of <math>C^k(K)</math> will be functions with domain <math>U'</math> instead of <math>U.</math> Despite <math>C^k(K)</math> depending on the open set (<math>U \text{ or } U'</math>), the standard notation for <math>C^k(K)</math> makes no mention of it. This is justified because, as this subsection will now explain, the space <math>C^k(K;U)</math> is canonically identified as a subspace of <math>C^k(K;U')</math> (both algebraically and topologically). It is enough to explain how to canonically identify <math>C^k(K; U)</math> with <math>C^k(K; U')</math> when one of <math>U</math> and <math>U'</math> is a subset of the other. The reason is that if <math>V</math> and <math>W</math> are arbitrary open subsets of <math>\R^n</math> containing <math>K</math> then the open set <math>U := V \cap W</math> also contains <math>K,</math> so that each of <math>C^k(K; V)</math> and <math>C^k(K; W)</math> is canonically identified with <math>C^k(K; V \cap W)</math> and now by transitivity, <math>C^k(K; V)</math> is thus identified with <math>C^k(K; W).</math> So assume <math>U \subseteq V</math> are open subsets of <math>\R^n</math> containing <math>K.</math> Given <math>f \in C_c^k(U),</math> its {{em|'''trivial extension''' to <math>V</math>}} is the function <math>F : V \to \Complex</math> defined by: <math display=block>F(x) = \begin{cases} f(x) & x \in U, \\ 0 & \text{otherwise}. \end{cases}</math> This trivial extension belongs to <math>C^k(V)</math> (because <math>f \in C_c^k(U)</math> has compact support) and it will be denoted by <math>I(f)</math> (that is, <math>I(f) := F</math>). The assignment <math>f \mapsto I(f)</math> thus induces a map <math>I : C_c^k(U) \to C^k(V)</math> that sends a function in <math>C_c^k(U)</math> to its trivial extension on <math>V.</math> This map is a linear [[Injective function|injection]] and for every compact subset <math>K \subseteq U</math> (where <math>K</math> is also a compact subset of <math>V</math> since <math>K \subseteq U \subseteq V</math>), <math display=block>\begin{alignat}{4} I\left(C^k(K; U)\right) &~=~ C^k(K; V) \qquad \text{ and thus } \\ I\left(C_c^k(U)\right) &~\subseteq~ C_c^k(V). \end{alignat}</math> If <math>I</math> is restricted to <math>C^k(K; U)</math> then the following induced linear map is a [[homeomorphism]] (linear homeomorphisms are called {{em|[[TVS-isomorphism]]s}}): <math display=block>\begin{alignat}{4} \,& C^k(K; U) && \to \,&& C^k(K;V) \\ & f && \mapsto\,&& I(f) \\ \end{alignat}</math> and thus the next map is a [[topological embedding]]: <math display=block>\begin{alignat}{4} \,& C^k(K; U) && \to \,&& C^k(V) \\ & f && \mapsto\,&& I(f). \\ \end{alignat}</math> Using the injection <math display=block>I : C_c^k(U) \to C^k(V)</math> the vector space <math>C_c^k(U)</math> is canonically identified with its image in <math>C_c^k(V) \subseteq C^k(V).</math> Because <math>C^k(K; U) \subseteq C_c^k(U),</math> through this identification, <math>C^k(K; U)</math> can also be considered as a subset of <math>C^k(V).</math> Thus the topology on <math>C^k(K;U)</math> is independent of the open subset <math>U</math> of <math>\R^n</math> that contains <math>K,</math>{{sfn|Rudin|1991|pp=149-181}} which justifies the practice of writing <math>C^k(K)</math> instead of <math>C^k(K; U).</math> ===Canonical LF topology=== {{Main|Spaces of test functions and distributions}} {{See also|LF-space|Topology of uniform convergence}} Recall that <math>C_c^k(U)</math> denotes all functions in <math>C^k(U)</math> that have compact [[#support of a function|support]] in <math>U,</math> where note that <math>C_c^k(U)</math> is the union of all <math>C^k(K)</math> as <math>K</math> ranges over all compact subsets of <math>U.</math> Moreover, for each <math>k,\, C_c^k(U)</math> is a dense subset of <math>C^k(U).</math> The special case when <math>k = \infty</math> gives us the space of test functions. {{block indent|em=1.5|text=<math>C_c^\infty(U)</math> is called the {{em|'''space of test functions''' on <math>U</math>}} and it may also be denoted by <math>\mathcal{D}(U).</math> Unless indicated otherwise, it is endowed with a topology called '''{{em|the canonical LF topology}}''', whose definition is given in the article: [[Spaces of test functions and distributions]].}} The canonical LF-topology is {{em|not}} metrizable and importantly, it is [[Comparison of topologies|{{em|'''strictly''' finer}}]] than the [[subspace topology]] that <math>C^\infty(U)</math> induces on <math>C_c^\infty(U).</math> However, the canonical LF-topology does make <math>C_c^\infty(U)</math> into a [[Complete topological vector space|complete]] [[Reflexive space|reflexive]] [[Nuclear space|nuclear]]{{sfn|Trèves|2006|pp=526-534}} [[Montel space|Montel]]{{sfn|Trèves|2006|p=357}} [[Bornological space|bornological]] [[Barrelled space|barrelled]] [[Mackey space]]; the same is true of its [[strong dual space]] (that is, the space of all distributions with its usual topology). The canonical [[LF-space|LF-topology]] can be defined in various ways. ===Distributions=== {{See also|Continuous linear functional}} As discussed earlier, continuous [[Linear form|linear functionals]] on a <math>C_c^\infty(U)</math> are known as distributions on <math>U.</math> Other equivalent definitions are described below. {{block indent|em=1.5|text=By definition, a {{em|'''distribution''' on <math>U</math>}} is a [[Continuous linear operator|continuous]] [[Linear form|linear functional]] on <math>C_c^\infty(U).</math> Said differently, a distribution on <math>U</math> is an element of the [[continuous dual space]] of <math>C_c^\infty(U)</math> when <math>C_c^\infty(U)</math> is endowed with its canonical LF topology.}} There is a canonical [[Dual system|duality pairing]] between a distribution <math>T</math> on <math>U</math> and a test function <math>f \in C_c^\infty(U),</math> which is denoted using [[angle brackets]] by <math display=block>\begin{cases} \mathcal{D}'(U) \times C_c^\infty(U) \to \R \\ (T, f) \mapsto \langle T, f \rangle := T(f) \end{cases}</math> One interprets this notation as the distribution <math>T</math> acting on the test function <math>f</math> to give a scalar, or symmetrically as the test function <math>f</math> acting on the distribution <math>T.</math> ====Characterizations of distributions==== '''Proposition.''' If <math>T</math> is a [[Linear form|linear functional]] on <math>C_c^\infty(U)</math> then the following are equivalent: # {{mvar|T}} is a distribution; # {{mvar|T}} is [[Continuous function|continuous]]; # {{mvar|T}} is [[Continuous function|continuous]] at the origin; # {{mvar|T}} is [[Uniform continuity|uniformly continuous]]; # {{mvar|T}} is a [[bounded operator]]; # {{mvar|T}} is [[sequentially continuous]]; #* explicitly, for every sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> that converges in <math>C_c^\infty(U)</math> to some <math>f \in C_c^\infty(U),</math> <math display=inline>\lim_{i \to \infty} T\left(f_i\right) = T(f);</math><ref group="note">Even though the topology of <math>C_c^\infty(U)</math> is not metrizable, a linear functional on <math>C_c^\infty(U)</math> is continuous if and only if it is sequentially continuous.</ref> # {{mvar|T}} is [[sequentially continuous]] at the origin; in other words, {{mvar|T}} maps null sequences<ref group=note name="Def null sequence">A '''{{em|null sequence}}''' is a sequence that converges to the origin.</ref> to null sequences; #* explicitly, for every sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> that converges in <math>C_c^\infty(U)</math> to the origin (such a sequence is called a {{em|null sequence}}), <math display=inline>\lim_{i \to \infty} T\left(f_i\right) = 0;</math> #* a {{em|null sequence}} is by definition any sequence that converges to the origin; # {{mvar|T}} maps null sequences to bounded subsets; #* explicitly, for every sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> that converges in <math>C_c^\infty(U)</math> to the origin, the sequence <math>\left(T\left(f_i\right)\right)_{i=1}^\infty</math> is bounded; # {{mvar|T}} maps [[Mackey convergence|Mackey convergent]] null sequences to bounded subsets; #* explicitly, for every Mackey convergent null sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U),</math> the sequence <math>\left(T\left(f_i\right)\right)_{i=1}^\infty</math> is bounded; #* a sequence <math>f_{\bull} = \left(f_i\right)_{i=1}^\infty</math> is said to be {{em|[[Mackey convergence|Mackey convergent]] to the origin}} if there exists a divergent sequence <math>r_{\bull} = \left(r_i\right)_{i=1}^\infty \to \infty</math> of positive real numbers such that the sequence <math>\left(r_i f_i\right)_{i=1}^\infty</math> is bounded; every sequence that is Mackey convergent to the origin necessarily converges to the origin (in the usual sense); # The kernel of {{mvar|T}} is a closed subspace of <math>C_c^\infty(U);</math> # The graph of {{mvar|T}} is closed; <!------ START: Removed information ---- * Note in particular that the following seminorms on <math>C^\infty(U)</math> (which recall were defined earlier) all restrict to continuous seminorms on <math>C_c^\infty(U)</math>: <math>\ q_{i,K}, \ r_{i,K}, \ r_{t,K},</math> and <math>s_{p,K},</math> where {{mvar|K}} is any compact subset of {{mvar|U}}, <math>i \geq 0</math> is an integer, and <math>p</math> is a multi-index. So to show that {{mvar|T}} is continuous, it {{em|suffices}} to show that the restriction to <math>C_c^\infty(U)</math> of one of these seminorms, call it <math>g,</math> satisfies <math>|T| \leq C g</math> for some <math>C > 0.</math> ---- END: Removed information ----> # There exists a continuous seminorm <math>g</math> on <math>C_c^\infty(U)</math> such that <math>|T| \leq g;</math> # There exists a constant <math>C > 0</math> and a finite subset <math>\{g_1, \ldots, g_m\} \subseteq \mathcal{P}</math> (where <math>\mathcal{P}</math> is any collection of continuous seminorms that defines the canonical LF topology on <math>C_c^\infty(U)</math>) such that <math>|T| \leq C(g_1 + \cdots + g_m);</math><ref group="note">If <math>\mathcal{P}</math> is also [[Directed set|directed]] under the usual function comparison then we can take the finite collection to consist of a single element.</ref> # For every compact subset <math>K\subseteq U</math> there exist constants <math>C>0</math> and <math>N\in \N</math> such that for all <math>f \in C^\infty(K),</math>{{sfn|Trèves|2006|pp=222-223}} <math display=block>|T(f)| \leq C \sup \{|\partial^\alpha f(x)| : x \in U, |\alpha|\leq N\};</math> # For every compact subset <math>K\subseteq U</math> there exist constants <math>C_K>0</math> and <math>N_K\in \N</math> such that for all <math>f \in C_c^\infty(U)</math> with [[#support of a function|support]] contained in <math>K,</math><ref name="Grubb 2009 page=14">See for example {{harvnb|Grubb|2009|page=14}}.</ref> <math display=block>|T(f)| \leq C_K \sup \{|\partial^\alpha f(x)| : x \in K, |\alpha|\leq N_K\};</math> # For any compact subset <math>K\subseteq U</math> and any sequence <math>\{f_i\}_{i=1}^\infty</math> in <math>C^\infty(K),</math> if <math>\{\partial^p f_i\}_{i=1}^\infty</math> converges uniformly to zero for all [[multi-index|multi-indices]] <math>p,</math> then <math>T(f_i) \to 0;</math> ====Topology on the space of distributions and its relation to the weak-* topology==== The set of all distributions on <math>U</math> is the [[continuous dual space]] of <math>C_c^\infty(U),</math> which when endowed with the [[Strong topology (polar topology)|strong dual topology]] is denoted by <math>\mathcal{D}'(U).</math> Importantly, unless indicated otherwise, the topology on <math>\mathcal{D}'(U)</math> is the [[strong dual topology]]; if the topology is instead the [[weak-* topology]] then this will be indicated. Neither topology is metrizable although unlike the weak-* topology, the strong dual topology makes <math>\mathcal{D}'(U)</math> into a [[Complete topological vector space|complete]] [[nuclear space]], to name just a few of its desirable properties. Neither <math>C_c^\infty(U)</math> nor its strong dual <math>\mathcal{D}'(U)</math> is a [[sequential space]] and so neither of their topologies can be fully described by sequences (in other words, defining only what sequences converge in these spaces is {{em|not}} enough to fully/correctly define their topologies). However, a {{em|sequence}} in <math>\mathcal{D}'(U)</math> converges in the strong dual topology if and only if it converges in the [[weak-* topology]] (this leads many authors to use pointwise convergence to {{em|define}} the convergence of a sequence of distributions; this is fine for sequences but this is {{em|not}} guaranteed to extend to the convergence of [[Net (mathematics)|nets]] of distributions because a net may converge pointwise but fail to converge in the strong dual topology). More information about the topology that <math>\mathcal{D}'(U)</math> is endowed with can be found in the article on [[spaces of test functions and distributions]] and the articles on [[Polar topology|polar topologies]] and [[dual system]]s. A [[Linear map|{{em|linear}} map]] from <math>\mathcal{D}'(U)</math> into another [[locally convex topological vector space]] (such as any [[normed space]]) is [[Continuous function (topology)|continuous]] if and only if it is [[sequentially continuous]] at the origin. However, this is no longer guaranteed if the map is not linear or for maps valued in more general [[topological space]]s (for example, that are not also locally convex [[topological vector space]]s). The same is true of maps from <math>C_c^\infty(U)</math> (more generally, this is true of maps from any locally convex [[bornological space]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)