Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition in coordinates == ===Cartesian coordinates=== In three-dimensional Cartesian coordinates, the divergence of a [[continuously differentiable]] [[vector field]] <math>\mathbf{F} = F_x\mathbf{i} + F_y\mathbf{j} + F_z\mathbf{k}</math> is defined as the [[scalar (mathematics)|scalar]]-valued function: <math display="block">\operatorname{div} \mathbf{F} = \nabla\cdot\mathbf{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (F_x,F_y,F_z) = \frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}.</math> Although expressed in terms of coordinates, the result is invariant under [[Rotation matrix|rotations]], as the physical interpretation suggests. This is because the trace of the [[Jacobian matrix and determinant|Jacobian matrix]] of an {{math|''N''}}-dimensional vector field {{math|'''F'''}} in {{mvar|N}}-dimensional space is invariant under any invertible linear transformation{{clarification needed|date=January 2024|reason=Presumably this means the trace of L^-1 J L, where J is the original Jacobian and L is the invertible linear function R^N to R^N? As opposed to the trace of LJ? It is true that the trace is preserved under the former, but obviously not the latter, e.g. take L = 2I, I the identity matrix.}}. The common notation for the divergence {{math|∇ · '''F'''}} is a convenient mnemonic, where the dot denotes an operation reminiscent of the [[dot product]]: take the components of the {{math|∇}} operator (see [[del]]), apply them to the corresponding components of {{math|'''F'''}}, and sum the results. Because applying an operator is different from multiplying the components, this is considered an [[abuse of notation]]. === Cylindrical coordinates === For a vector expressed in '''local''' unit [[Cylindrical coordinate system|cylindrical coordinates]] as <math display="block">\mathbf{F} = \mathbf{e}_r F_r + \mathbf{e}_\theta F_\theta + \mathbf{e}_z F_z,</math> where {{math|'''e'''<sub>''a''</sub>}} is the unit vector in direction {{math|''a''}}, the divergence is{{refn|[http://mathworld.wolfram.com/CylindricalCoordinates.html Cylindrical coordinates] at Wolfram Mathworld}} <math display="block">\operatorname{div} \mathbf F = \nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} \left(r F_r\right) + \frac1r \frac{\partial F_\theta}{\partial\theta} + \frac{\partial F_z}{\partial z}. </math> The use of local coordinates is vital for the validity of the expression. If we consider {{math|'''x'''}} the position vector and the functions {{math|''r''('''x''')}}, {{math|''θ''('''x''')}}, and {{math|''z''('''x''')}}, which assign the corresponding '''global''' cylindrical coordinate to a vector, in general {{nowrap|<math>r(\mathbf{F}(\mathbf{x})) \neq F_r(\mathbf{x})</math>,}} {{nowrap|<math>\theta(\mathbf{F}(\mathbf{x})) \neq F_{\theta}(\mathbf{x})</math>,}} and {{nowrap|<math>z(\mathbf{F}(\mathbf{x})) \neq F_z(\mathbf{x})</math>.}} In particular, if we consider the identity function {{math|1='''F'''('''x''') = '''x'''}}, we find that: <math display="block">\theta(\mathbf{F}(\mathbf{x})) = \theta \neq F_{\theta}(\mathbf{x}) = 0.</math> === Spherical coordinates === In [[spherical coordinates]], with {{mvar|θ}} the angle with the {{mvar|z}} axis and {{mvar|φ}} the rotation around the {{mvar|z}} axis, and {{math|'''F'''}} again written in local unit coordinates, the divergence is{{refn|[http://mathworld.wolfram.com/SphericalCoordinates.html Spherical coordinates] at Wolfram Mathworld}} <math>\operatorname{div}\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 F_r\right) + \frac{1}{r\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta\, F_\theta\right) + \frac{1}{r \sin\theta} \frac{\partial F_\varphi}{\partial \varphi}.</math> === Tensor field === Let {{math|'''A'''}} be continuously differentiable second-order [[tensor field]] defined as follows: <math display="block">\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}</math> the divergence in cartesian coordinate system is a first-order tensor field{{sfn|Gurtin|1981|p=30}} and can be defined in two ways:<ref>{{ cite web |title=1.14 Tensor Calculus I: Tensor Fields |work=Foundations of Continuum Mechanics |url=http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_14_Tensor_Calculus.pdf |archive-url=https://web.archive.org/web/20130108133336/http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_14_Tensor_Calculus.pdf |archive-date=2013-01-08 | url-status=live }}</ref> <math display="block">\operatorname{div} (\mathbf{A}) = \frac{\partial A_{ik}}{\partial x_k}~\mathbf{e}_i = A_{ik,k}~\mathbf{e}_i = \begin{bmatrix} \dfrac{\partial A_{11}}{\partial x_1} +\dfrac{\partial A_{12}}{\partial x_2} +\dfrac{\partial A_{13}}{\partial x_3} \\ \dfrac{\partial A_{21}}{\partial x_1} +\dfrac{\partial A_{22}}{\partial x_2} +\dfrac{\partial A_{23}}{\partial x_3} \\ \dfrac{\partial A_{31}}{\partial x_1} +\dfrac{\partial A_{32}}{\partial x_2} +\dfrac{\partial A_{33}}{\partial x_3} \end{bmatrix}</math> and<ref> {{cite book |author=William M. Deen |title=Introduction to Chemical Engineering Fluid Mechanics |publisher= Cambridge University Press |date=2016 |page=133 |isbn=978-1-107-12377-9 |url=https://books.google.com/books?id=H1CeDAAAQBAJ&q=cauchy+momentum+asymmetric&pg=PA146 }}</ref><ref> {{cite book |author=Tasos C. Papanastasiou |author2=Georgios C. Georgiou |author3=Andreas N. Alexandrou |title=Viscous Fluid Flow |date=2000 |page=66,68 |publisher=CRC Press |isbn=0-8493-1606-5 |url=https://www.mobt3ath.com/uplode/book/book-46462.pdf |archive-url=https://web.archive.org/web/20200220125401/https://www.mobt3ath.com/uplode/book/book-46462.pdf |archive-date=2020-02-20 |url-status=live }}</ref><ref> {{cite web |author=Adam Powell |title=The Navier-Stokes Equations |date=12 April 2010 | url=http://texmex.mit.edu/pub/emanuel/CLASS/12.340/navier-stokes(2).pdf }}</ref> <math display="block"> \nabla \cdot \mathbf A = \frac{\partial A_{ki}}{\partial x_k} ~\mathbf{e}_i = A_{ki,k}~\mathbf{e}_i = \begin{bmatrix} \dfrac{\partial A_{11}}{\partial x_1} + \dfrac{\partial A_{21}}{\partial x_2} + \dfrac{\partial A_{31}}{\partial x_3} \\ \dfrac{\partial A_{12}}{\partial x_1} + \dfrac{\partial A_{22}}{\partial x_2} + \dfrac{\partial A_{32}}{\partial x_3} \\ \dfrac{\partial A_{13}}{\partial x_1} + \dfrac{\partial A_{23}}{\partial x_2} + \dfrac{\partial A_{33}}{\partial x_3} \\ \end{bmatrix} </math> We have <math display="block">\operatorname{div} {\left(\mathbf{A}^\mathsf{T}\right)} = \nabla \cdot \mathbf A</math> If tensor is symmetric {{math|1=''A''<sub>''ij''</sub> = ''A''<sub>''ji''</sub>}} then {{nowrap|<math>\operatorname{div} (\mathbf{A}) = \nabla \cdot \mathbf A</math>.}} Because of this, often in the literature the two definitions (and symbols {{math|div}} and <math>\nabla \cdot</math>) are used interchangeably (especially in mechanics equations where tensor symmetry is assumed). Expressions of <math>\nabla\cdot\mathbf A</math> in cylindrical and spherical coordinates are given in the article [[del in cylindrical and spherical coordinates]]. === General coordinates === Using [[Einstein notation]] we can consider the divergence in [[Curvilinear coordinates|general coordinates]], which we write as {{math|''x''<sup>1</sup>, …, ''x''<sup>''i''</sup>, …, ''x''<sup>''n''</sup>}}, where {{mvar|n}} is the number of dimensions of the domain. Here, the upper index refers to the number of the coordinate or component, so {{math|''x''<sup>2</sup>}} refers to the second component, and not the quantity {{mvar|x}} squared. The index variable {{mvar|i}} is used to refer to an arbitrary component, such as {{math|''x''<sup>''i''</sup>}}. The divergence can then be written via the [https://www.genealogy.math.ndsu.nodak.edu/id.php?id=59087 Voss]-[[Hermann Weyl|Weyl]] formula,<ref>{{cite web|last1=Grinfeld|first1=Pavel|title=The Voss-Weyl Formula (Youtube link)|website=[[YouTube]] |date=16 April 2014 |url=https://www.youtube.com/watch?v=BD2AiFk651E&list=PLlXfTHzgMRULkodlIEqfgTS-H1AY_bNtq&index=23| archive-url=https://ghostarchive.org/varchive/youtube/20211211/BD2AiFk651E| archive-date=2021-12-11 | url-status=live|access-date=9 January 2018|language=en}}{{cbignore}}</ref> as: <math display="block">\operatorname{div}(\mathbf{F}) = \frac{1}{\rho} \frac{\partial {\left(\rho \, F^i\right)}}{\partial x^i},</math> where <math>\rho</math> is the local coefficient of the [[volume element]] and {{math|''F<sup>i</sup>''}} are the components of <math>\mathbf{F} = F^i\mathbf{e}_i</math> with respect to the local '''unnormalized''' [[Curvilinear coordinates#Covariant and contravariant bases|covariant basis]] (sometimes written as {{nowrap|<math>\mathbf{e}_i = \partial\mathbf{x} / \partial x^i</math>).}} The Einstein notation implies summation over {{mvar|i}}, since it appears as both an upper and lower index. The volume coefficient {{mvar|ρ}} is a function of position which depends on the coordinate system. In Cartesian, cylindrical and spherical coordinates, using the same conventions as before, we have {{math|1=''ρ'' = 1}}, {{math|1=''ρ'' = ''r''}} and {{math|1=''ρ'' = ''r''<sup>2</sup> sin ''θ''}}, respectively. The volume can also be expressed as <math display="inline">\rho = \sqrt{\left|\det g_{ab}\right|}</math>, where {{math|''g<sub>ab</sub>''}} is the [[metric tensor]]. The [[determinant]] appears because it provides the appropriate invariant definition of the volume, given a set of vectors. Since the determinant is a scalar quantity which doesn't depend on the indices, these can be suppressed, writing {{nowrap|<math display="inline">\rho = \sqrt{\left|\det g\right|}</math>.}} The absolute value is taken in order to handle the general case where the determinant might be negative, such as in pseudo-Riemannian spaces. The reason for the square-root is a bit subtle: it effectively avoids double-counting as one goes from curved to Cartesian coordinates, and back. The volume (the determinant) can also be understood as the [[Jacobian matrix and determinant|Jacobian]] of the transformation from Cartesian to curvilinear coordinates, which for {{math|1=''n'' = 3}} gives {{nowrap|<math display="inline">\rho = \left| \frac{\partial(x,y,z)}{\partial (x^1,x^2,x^3)}\right|</math>.}} Some conventions expect all local basis elements to be normalized to unit length, as was done in the previous sections. If we write <math>\hat{\mathbf{e}}_i</math> for the normalized basis, and <math>\hat{F}^i</math> for the components of {{math|'''F'''}} with respect to it, we have that <math display="block">\mathbf{F} = F^i \mathbf{e}_i = F^i \|{\mathbf{e}_i }\| \frac{\mathbf{e}_i}{\| \mathbf{e}_i \|} = F^i \sqrt{g_{ii}} \, \hat{\mathbf{e}}_i = \hat{F}^i \hat{\mathbf{e}}_i,</math> using one of the properties of the metric tensor. By dotting both sides of the last equality with the contravariant element {{nowrap|<math>\hat{\mathbf{e}}^i</math>,}} we can conclude that <math display="inline">F^i = \hat{F}^i / \sqrt{g_{ii}}</math>. After substituting, the formula becomes: <math display="block">\operatorname{div}(\mathbf{F}) = \frac 1{\rho} \frac{\partial \left(\frac{\rho}{\sqrt{g_{ii}}}\hat{F}^i\right)}{\partial x^i} = \frac 1{\sqrt{\det g}} \frac{\partial \left(\sqrt{\frac{\det g}{g_{ii}}}\,\hat{F}^i\right)}{\partial x^i}.</math> See ''{{section link||In curvilinear coordinates}}'' for further discussion.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)