Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Embedded system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Development === One of the first recognizably modern embedded systems was the [[Apollo Guidance Computer]],{{citation needed|reason=linked article claims it is the first IC-based computer. nothing there supports it being the first embedded system.|date=August 2018}} developed ca. 1965 by [[Charles Stark Draper]] at the [[MIT Instrumentation Laboratory]]. At the project's inception, the Apollo guidance computer was considered the riskiest item in the Apollo project as it employed the then newly developed [[monolithic integrated circuit]]s to reduce the computer's size and weight. An early mass-produced embedded system was the [[D-17B|Autonetics D-17 guidance computer]] for the [[Minuteman missile]], released in 1961. When the Minuteman II went into production in 1966, the D-17 was replaced with a new computer that represented the first high-volume use of integrated circuits. Since these early applications in the 1960s, embedded systems have come down in price and there has been a dramatic rise in processing power and functionality. An early microprocessor, the [[Intel 4004]] (released in 1971), was designed for [[calculator]]s and other small systems but still required external memory and support chips. By the early 1980s, memory, input and output system components had been integrated into the same chip as the processor forming a microcontroller. Microcontrollers find applications where a general-purpose computer would be too costly. As the cost of microprocessors and microcontrollers fell, the prevalence of embedded systems increased. A comparatively low-cost microcontroller may be programmed to fulfill the same role as a large number of separate components. With microcontrollers, it became feasible to replace, even in consumer products, expensive knob-based [[Analogue electronics|analog]] components such as [[potentiometer]]s and [[variable capacitor]]s with up/down buttons or knobs read out by a microprocessor. Although in this context an embedded system is usually more complex than a traditional solution, most of the complexity is contained within the microcontroller itself. Very few additional components may be needed and most of the design effort is in the software. Software prototype and test can be quicker compared with the design and construction of a new circuit not using an embedded processor.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)