Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Entire function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=={{anchor|order of an entire function}} Order and type == The '''order''' (at infinity) of an entire function <math>f(z)</math> is defined using the [[limit superior]] as: <math display="block">\rho = \limsup_{r\to\infty}\frac{\ln \left (\ln\| f \|_{\infty, B_r} \right ) }{\ln r},</math> where <math>B_r</math> is the disk of radius <math>r</math> and <math>\|f \|_{\infty, B_r}</math> denotes the [[supremum norm]] of <math>f(z)</math> on <math>B_r</math>. The order is a non-negative [[real number]] or infinity (except when <math>f(z) = 0</math> for all <math>z</math>). In other words, the order of <math>f(z)</math> is the [[infimum]] of all <math>m</math> such that: <math display="block">f(z) = O \left (\exp \left (|z|^m \right ) \right ), \quad \text{as } z \to \infty.</math> The example of <math>f(z) = \exp(2z^2)</math> shows that this does not mean <math>f(z)=O(\exp(|z|^m))</math> if <math>f(z)</math> is of order <math>m</math>. If <math>0<\rho < \infty,</math> one can also define the '''''type''''': <math display="block">\sigma=\limsup_{r\to\infty}\frac{\ln \| f\|_{\infty, B_r}} {r^\rho}.</math> If the order is 1 and the type is <math>\sigma</math>, the function is said to be "of [[exponential type]] <math>\sigma</math>". If it is of order less than 1 it is said to be of exponential type 0. If <math display="block"> f(z)=\sum_{n=0}^\infty a_n z^n,</math> then the order and type can be found by the formulas <math display="block">\begin{align} \rho &=\limsup_{n\to\infty} \frac{n\ln n}{-\ln|a_n|} \\[6pt] (e\rho\sigma)^{\frac{1}{\rho}} &= \limsup_{n\to\infty} n^{\frac{1}{\rho}} |a_n|^{\frac{1}{n}} \end{align}</math> Let <math>f^{(n)}</math> denote the <math>n</math>-th derivative of <math>f</math>. Then we may restate these formulas in terms of the derivatives at any arbitrary point <math>z_0</math>: <math display="block">\begin{align} \rho &=\limsup_{n\to\infty}\frac{n\ln n}{n\ln n-\ln|f^{(n)}(z_0)|}=\left(1-\limsup_{n\to\infty}\frac{\ln|f^{(n)}(z_0)|}{n\ln n}\right)^{-1} \\[6pt] (\rho\sigma)^{\frac{1}{\rho}} &=e^{1-\frac{1}{\rho}} \limsup_{n\to\infty}\frac{|f^{(n)}(z_0)|^{\frac{1}{n}}}{n^{1-\frac{1}{\rho}}} \end{align}</math> The type may be infinite, as in the case of the [[reciprocal gamma function]], or zero (see example below under {{slink||Order 1}}). Another way to find out the order and type is [[Matsaev's theorem]]. ===Examples=== Here are some examples of functions of various orders: ====Order ''Ο''==== For arbitrary positive numbers <math>\rho</math> and <math>\sigma</math> one can construct an example of an entire function of order <math>\rho</math> and type <math>\sigma</math> using: <math display="block">f(z)=\sum_{n=1}^\infty \left (\frac{e\rho\sigma}{n} \right )^{\frac{n}{\rho}} z^n</math> ====Order 0==== * Non-zero polynomials *<math>\sum_{n=0}^\infty 2^{-n^2} z^n</math> ====Order 1/4==== <math display="block">f(\sqrt[4]z)</math> where <math display="block">f(u)=\cos(u)+\cosh(u)</math> ====Order 1/3==== <math display="block">f(\sqrt[3]z)</math> where <math display="block">f(u)=e^u+e^{\omega u}+e^{\omega^2 u} = e^u+2e^{-\frac{u}{2}}\cos \left (\frac{\sqrt 3u}{2} \right ), \quad \text{with } \omega \text{ a complex cube root of 1}.</math> ====Order 1/2==== <math display="block">\cos \left (a\sqrt z \right )</math> with <math>a\neq 0</math> (for which the type is given by <math>\sigma=|a|</math>) ====Order 1==== *<math>\exp(az)</math> with <math>a\neq 0</math> (<math>\sigma=|a|</math>) *<math>\sin(z)</math> *<math>\cosh(z)</math> *the [[Bessel function]]s <math>J_n(z)</math> and spherical Bessel functions <math>j_n(z)</math> for integer values of <math>n</math><ref>See asymptotic expansion in Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_377.htm p. 377, 9.7.1].</ref> *the [[reciprocal gamma function]] <math>1/\Gamma(z)</math> (<math>\sigma</math> is infinite) *<math>\sum_{n=2}^\infty \frac{z^n}{(n\ln n)^n}. \quad (\sigma=0)</math> ====Order 3/2==== * [[Airy function]] <math>Ai(z)</math> ====Order 2==== *<math>\exp(az^2)</math> with <math>a\neq 0</math> (<math>\sigma=|a|</math>) *The [[Barnes G-function]] (<math>\sigma</math> is infinite). ====Order infinity==== *<math>\exp(\exp(z))</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)