Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Equivalence of categories
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * Consider the category <math>C</math> having a single object <math>c</math> and a single morphism <math>1_{c}</math>, and the category <math>D</math> with two objects <math>d_{1}</math>, <math>d_{2}</math> and four morphisms: two identity morphisms <math>1_{d_{1}}</math>, <math>1_{d_{2}}</math> and two isomorphisms <math>\alpha \colon d_{1} \to d_{2}</math> and <math>\beta \colon d_{2} \to d_{1}</math>. The categories <math>C</math> and <math>D</math> are equivalent; we can (for example) have <math>F</math> map <math>c</math> to <math>d_{1}</math> and <math>G</math> map both objects of <math>D</math> to <math>c</math> and all morphisms to <math>1_{c}</math>. * By contrast, the category <math>C</math> with a single object and a single morphism is ''not'' equivalent to the category <math>E</math> with two objects and only two identity morphisms. The two objects in <math>E</math> are ''not'' isomorphic in that there are no morphisms between them. Thus any functor from <math>C</math> to <math>E</math> will not be essentially surjective. * Consider a category <math>C</math> with one object <math>c</math>, and two morphisms <math>1_{c}, f \colon c \to c</math>. Let <math>1_{c}</math> be the identity morphism on <math>c</math> and set <math>f \circ f = 1</math>. Of course, <math>C</math> is equivalent to itself, which can be shown by taking <math>1_{c}</math> in place of the required natural isomorphisms between the functor <math>\mathbf{I}_{C}</math> and itself. However, it is also true that <math>f</math> yields a natural isomorphism from <math>\mathbf{I}_{C}</math> to itself. Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction. * The [[category of sets]] and [[partial function]]s is equivalent to but not isomorphic with the category of [[pointed set]]s and point-preserving maps.<ref name="KoslowskiMelton2001">{{cite book|editor=Jürgen Koslowski and Austin Melton|title=Categorical Perspectives|year=2001|publisher=Springer Science & Business Media|isbn=978-0-8176-4186-3|page=10|author=Lutz Schröder|chapter=Categories: a free tour}}</ref> * Consider the category <math>C</math> of finite-[[dimension of a vector space|dimensional]] [[real number|real]] [[vector space]]s, and the category <math>D = \mathrm{Mat}(\mathbb{R})</math> of all real [[matrix (mathematics)|matrices]] (the latter category is explained in the article on [[additive category|additive categories]]). Then <math>C</math> and <math>D</math> are equivalent: The functor <math>G \colon D \to C</math> which maps the object <math>A_{n}</math> of <math>D</math> to the vector space <math>\mathbb{R}^{n}</math> and the matrices in <math>D</math> to the corresponding linear maps is full, faithful and essentially surjective. * One of the central themes of [[algebraic geometry]] is the duality of the category of [[affine scheme]]s and the category of [[commutative ring]]s. The functor <math>G</math> associates to every commutative ring its [[spectrum of a ring|spectrum]], the scheme defined by the [[prime ideal]]s of the ring. Its adjoint <math>F</math> associates to every affine scheme its ring of global sections. * In [[functional analysis]] the category of commutative [[C*-algebra]]s with identity is contravariantly equivalent to the category of [[compact space|compact]] [[Hausdorff space]]s. Under this duality, every compact Hausdorff space <math>X</math> is associated with the algebra of continuous complex-valued functions on <math>X</math>, and every commutative C*-algebra is associated with the space of its [[maximal ideal]]s. This is the [[Gelfand representation]]. * In [[lattice theory]], there are a number of dualities, based on [[representation theorem]]s that connect certain classes of lattices to classes of [[topology|topological spaces]]. Probably the most well-known theorem of this kind is ''[[Stone's representation theorem for Boolean algebras]]'', which is a special instance within the general scheme of ''[[Stone duality]]''. Each [[Boolean algebra (structure)|Boolean algebra]] <math>B</math> is mapped to a specific topology on the set of [[lattice theory|ultrafilters]] of <math>B</math>. Conversely, for any topology the clopen (i.e. closed and open) subsets yield a Boolean algebra. One obtains a duality between the category of Boolean algebras (with their homomorphisms) and [[Stone space]]s (with continuous mappings). Another case of Stone duality is [[Birkhoff's representation theorem]] stating a duality between finite partial orders and finite distributive lattices. * In [[pointless topology]] the category of spatial locales is known to be equivalent to the dual of the category of sober spaces. * For two [[Ring (mathematics)|rings]] ''R'' and ''S'', the [[product category]] ''R''-'''Mod'''×''S''-'''Mod''' is equivalent to (''R''×''S'')-'''Mod'''.{{Citation needed|date=May 2015}} * Any category is equivalent to its [[skeleton (category theory)|skeleton]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)