Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Equivalent air depth
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivation of the formulas== For a given nitrox mixture and a given depth, the equivalent air depth expresses the theoretical depth that would produce the same [[partial pressure]] of nitrogen if regular air (79% nitrogen) was used instead: :<math>ppN_2(nitrox, depth) = ppN_2(air, EAD)</math> Hence, following the definition of partial pressure: :<math>FN_2(nitrox) \cdot P_{depth} = FN_2(air) \cdot P_{EAD} </math> with <math>FN_2</math> expressing the fraction of nitrogen and <math>P_{depth}</math> expressing the pressure at the given depth. Solving for <math>P_{EAD}</math> then yields a general formula: :<math>P_{EAD} = {FN_2(nitrox) \over FN_2(air)} \cdot P_{depth} </math> In this formula, <math>P_{EAD}\,</math> and <math>P_{depth}\,</math> are absolute pressures. In practice, it is much more convenient to work with the equivalent columns of [[seawater]] depth, because the depth can be read off directly from the [[depth gauge]] or [[dive computer]]. The relationship between pressure and depth is governed by [[Pascal's law]]: :<math> P_{depth} = P_{atmosphere} + \rho_{seawater} \cdot g \cdot h_{depth}\,</math> Using the SI system with pressures expressed in [[pascal (unit)|pascal]], we have: :<math> P_{depth}(Pa) = P_{atmosphere}(Pa) + \rho_{seawater} \cdot g \cdot h_{depth}(m)\,</math> Expressing the pressures in [[atmosphere (unit)|atmospheres]] yields a convenient formula (1 atm β‘ 101325 Pa): :<math> P_{depth}(atm) = 1 + \frac{\rho_{seawater} \cdot g \cdot h_{depth}}{P_{atmosphere}(Pa)} = 1 + \frac{1027 \cdot 9.8 \cdot h_{depth}}{101325}\ \approx 1 + \frac{h_{depth}(m)}{10}</math> To simplify the algebra we will define <math>\frac{FN_2(nitrox)}{FN_2(air)} = R</math>. Combining the general formula and Pascal's law, we have: :<math>1 + \frac{h_{EAD}}{10} = R \cdot (1 + \frac{h_{depth}}{10})</math> so that :<math>h_{EAD} = 10 \cdot (R + R \cdot \frac{h_{depth}}{10} - 1) = R \cdot (h_{depth} + 10) - 10</math> Since <math>h(ft) \approx 3.3 \cdot h (m)\,</math>, the equivalent formula for the imperial system becomes :<math>h_{EAD}(ft) = 3.3 \cdot \Bigl(R \cdot (\frac{h_{depth}(ft)}{3.3} + 10) - 10 \Bigr) = R \cdot (h_{depth}(ft) + 33) - 33</math> Substituting R again, and noting that <math>FN_2(air) = 0.79</math>, we have the concrete formulas: :<math>h_{EAD}(m) = \frac{FN_2(nitrox)}{0.79} \cdot (h_{depth}(m) + 10) - 10</math> :<math>h_{EAD}(ft) = \frac{FN_2(nitrox)}{0.79} \cdot (h_{depth}(ft) + 33) - 33</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)