Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euclidean domain
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Examples of Euclidean domains include: *Any field. Define {{math|''f'' (''x'') {{=}} 1}} for all nonzero {{mvar|x}}. *{{math|'''Z'''}}, the ring of integers. Define {{math|''f'' (''n'') {{=}} {{!}}''n''{{!}}}}, the [[absolute value]] of {{mvar|n}}.<ref>{{harvnb|Fraleigh|Katz|1967|p=377, Example 1}}</ref> *{{math|'''Z'''[{{hairsp|''i''}}]}}, the ring of [[Gaussian integer]]s. Define {{math|''f'' (''a'' + ''bi'') {{=}} ''a''{{sup|2}} + ''b''{{sup|2}}}}, the [[field norm|norm]] of the Gaussian integer {{math|''a'' + ''bi''}}. * {{math|'''Z'''[Ο]}} (where {{math|Ο}} is a [[Root of unity#General definition|primitive]] (non-[[real number|real]]) [[cube root of unity]]), the ring of [[Eisenstein integer]]s. Define {{math|''f'' (''a'' + ''b''Ο) {{=}} ''a''{{sup|2}} β ''ab'' + ''b''{{sup|2}}}}, the norm of the Eisenstein integer {{math|''a'' + ''b''Ο}}. *{{math|''K''[''X'']}}, the [[polynomial ring|ring of polynomials]] over a [[field (mathematics)|field]] {{mvar|K}}. For each nonzero polynomial {{mvar|P}}, define {{math|''f'' (''P'')}} to be the [[degree of a polynomial|degree]] of {{mvar|P}}.<ref>{{harvnb|Fraleigh|Katz|1967|p=377, Example 2}}</ref> *{{math|''K''{{brackets|''X''}}}}, the ring of [[formal power series]] over the field {{mvar|K}}. For each nonzero [[power series]] {{mvar|P}}, define {{math|''f'' (''P'')}} as the [[order (power series)|order]] of {{mvar|P}}, that is the degree of the smallest power of {{mvar|X}} occurring in {{mvar|P}}. In particular, for two nonzero power series {{mvar|P}} and {{mvar|Q}}, {{math|''f'' (''P'') β€ ''f'' (''Q'')}} if and only if {{mvar|P}} [[Formal power series#Dividing series|divides]] {{mvar|Q}}. *Any [[discrete valuation ring]]. Define {{math|''f'' (''x'')}} to be the highest power of the [[maximal ideal]] {{mvar|M}} containing {{mvar|x}}. Equivalently, let {{mvar|g}} be a generator of {{mvar|M}}, and {{mvar|v}} be the unique integer such that {{mvar|g{{hairsp}}{{sup|v}}}} is an [[associated elements|associate]] of {{mvar|x}}, then define {{math|''f'' (''x'') {{=}} ''v''}}. The previous example {{math|''K''{{brackets|''X''}}}} is a special case of this. *A [[Dedekind domain]] with finitely many [[zero ideal|nonzero]] [[prime ideal]]s {{math|''P''{{sub|1}}, ..., ''P{{sub|n}}''}}. Define <math>f(x) = \sum_{i=1}^n v_i(x)</math>, where {{mvar|v{{sub|i}}}} is the [[discrete valuation]] corresponding to the ideal {{mvar|P{{sub|i}}}}.<ref>{{Cite journal|last=Samuel|first=Pierre|date=1 October 1971|title=About Euclidean rings|journal=Journal of Algebra|volume=19|issue=2|pages=282β301 (p. 285)|doi=10.1016/0021-8693(71)90110-4|issn=0021-8693|doi-access=free}}</ref> Examples of domains that are ''not'' Euclidean domains include: * Every domain that is not a [[principal ideal domain]], such as the ring of polynomials in at least two indeterminates over a field, or the ring of univariate polynomials with integer [[coefficient]]s, or the number ring {{math|'''Z'''[{{hairsp|{{sqrt|−5}}}}]}}. * The [[ring of integers]] of {{math|'''Q'''({{hairsp|{{sqrt|β19}}}})}}, consisting of the numbers {{math|{{sfrac|''a'' + ''b''{{sqrt|−19}}|2}}}} where {{mvar|a}} and {{mvar|b}} are integers and both even or both odd. It is a principal ideal domain that is not Euclidean.This was proved by [[Theodore Motzkin]] and was the first case known.<ref>{{Cite journal |last=Motzkin |first=Th |date=December 1949 |title=The Euclidean algorithm |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-55/issue-12/The-Euclidean-algorithm/bams/1183514381.full |journal=Bulletin of the American Mathematical Society |volume=55 |issue=12 |pages=1142β1146 |doi=10.1090/S0002-9904-1949-09344-8 |issn=0002-9904|doi-access=free }}</ref> * The ring {{math|1=''A'' = '''R'''[''X'', ''Y'']/(''X''<sup> 2</sup> + ''Y''<sup> 2</sup> + 1)}} is also a principal ideal domain<ref> {{cite book|last=Pierre|first=Samuel|url=http://www.math.tifr.res.in/~publ/ln/tifr30.pdf|title=Lectures on Unique Factorization Domains|date=1964|publisher=Tata Institute of Fundamental Research|isbn= |pages=27β28|author-link=}} </ref> that is not Euclidean. To see that it is not a Euclidean domain, it suffices to show that for every non-zero prime <math>p\in A</math>, the map <math>A^\times\to(A/p)^\times</math> induced by the quotient map <math>A\to A/p</math> is not [[surjective]].<ref> {{cite web |url=https://math.stackexchange.com/a/864627 |title=Quotient of polynomials, PID but not Euclidean domain? |last= |first= |date= |website= |publisher= |access-date= |quote=}} </ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)