Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler numbers
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== In terms of Stirling numbers of the second kind === The following two formulas express the Euler numbers in terms of [[Stirling numbers of the second kind]]:<ref>{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385β387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 | s2cid= 209973489 }}</ref><ref>{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}</ref> :<math> E_{n}=2^{2n-1}\sum_{\ell=1}^{n}\frac{(-1)^{\ell}S(n,\ell)}{\ell+1}\left(3\left(\frac{1}{4}\right)^{\overline{\ell\phantom{.}}}-\left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}}\right), </math> :<math> E_{2n}=-4^{2n}\sum_{\ell=1}^{2n}(-1)^{\ell}\cdot \frac{S(2n,\ell)}{\ell+1}\cdot \left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}},</math> where <math> S(n,\ell) </math> denotes the [[Stirling numbers of the second kind]], and <math> x^{\overline{\ell\phantom{.}}}=(x)(x+1)\cdots (x+\ell-1) </math> denotes the [[Falling and rising factorials|rising factorial]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)