Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Figurate number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Triangular numbers and their analogs in higher dimensions == The [[triangular number]]s for {{math|''n'' {{=}} 1, 2, 3, ...}} are the result of the juxtaposition of the linear numbers (linear gnomons) for {{math|''n'' {{=}} 1, 2, 3, ...}}: {| cellpadding="10" |- align="center" valign="bottom" |style="display: inline-block; line-height: 0;"| [[File:GrayDotX.svg|16px|*]] |style="display: inline-block; line-height: 0;"| [[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]] |style="display: inline-block; line-height: 0;"| [[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]] |style="display: inline-block; line-height: 0;"| [[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]] |style="display: inline-block; line-height: 0;"| [[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]] |style="display: inline-block; line-height: 0;"| [[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br />[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]] |} These are the binomial coefficients <math>\textstyle \binom{n+1}{2} </math>. This is the case {{math|''r'' {{=}} 2}} of the fact that the {{mvar|r}}th diagonal of [[Pascal's triangle#Patterns and properties|Pascal's triangle]] for {{math|''r'' β₯ 0}} consists of the figurate numbers for the {{mvar|r}}-dimensional analogs of triangles ({{mvar|r}}-dimensional [[simplex|simplices]]). The simplicial polytopic numbers for {{math|''r'' {{=}} 1, 2, 3, 4, ...}} are: *<math>P_1(n) = \frac{n}{1} = \binom{n+0}{1}=\binom{n}{1} </math> (linear numbers), *<math>P_2(n) = \frac{n(n+1)}{2} = \binom{n+1}{2}</math> ([[triangular number]]s), *<math>P_3(n) = \frac{n(n+1)(n+2)}{6} = \binom{n+2}{3}</math> ([[tetrahedral number]]s), *<math>P_4(n) = \frac{n(n+1)(n+2)(n+3)}{24} = \binom{n+3}{4}</math> (pentachoric numbers, [[pentatopic number]]s, 4-simplex numbers), <math>\qquad\vdots</math> *<math>P_r(n) = \frac{n(n+1)(n+2)\cdots(n+r-1)}{r!} = \binom{n+(r-1)}{r}</math> ({{mvar|r}}-topic numbers, {{mvar|r}}-[[simplex]] numbers). The terms ''[[square number]]'' and ''[[cubic number]]'' derive from their geometric representation as a [[Square (geometry)|square]] or [[cube (geometry)|cube]]. The difference of two positive triangular numbers is a [[trapezoidal number]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)