Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fine-structure constant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Measurement == [[File:EighthOrderMagMoment.svg|frame|right|Eighth-[[Perturbation theory|order]] [[Feynman diagrams]] on electron self-interaction. The arrowed horizontal line represents the electron, the wavy lines are virtual photons, and the circles are virtual [[electron]]–[[positron]] pairs.]] The [[CODATA]] recommended value of {{math|''α''}} is{{physconst|alpha|ref=only}} {{block indent|{{math|1=''α'' = {{sfrac|''e''{{sup|2}}| 4''πε''{{sub|0}}''ħc''}}}} {{=}} {{physconst|alpha|ref=no}}.}} This has a relative standard uncertainty of {{physconst|alpha|runc=yes|after=.}} This value for {{math|''α''}} gives {{nowrap|1={{mvar|µ}}{{sub|0}} = 4''π'' × {{val|0.99999999987|(16)|e=-7|u=H.m-1}}}}, 0.8 times the standard uncertainty away from its old defined value, with the mean differing from the old value by only 0.13 [[parts per billion]]. Historically the value of the [[multiplicative inverse|reciprocal]] of the fine-structure constant is often given. The [[CODATA]] recommended value is {{physconst|alphainv|ref=only}} {{block indent|{{math|{{sfrac|1|''α''}}}} {{=}} {{physconst|alphainv|ref=no}}.}} While the value of {{mvar|α}} can be determined from estimates of the constants that appear in any of its definitions, the theory of [[quantum electrodynamics]] (QED) provides a way to measure {{mvar|α}} directly using the [[quantum Hall effect]] or the [[anomalous magnetic moment]] of the [[electron]].<ref name=":0"> {{cite journal |last1=Fan |first1=X. |last2=Myers |first2=T. G. |last3=Sukra |first3=B. A. D. |last4=Gabrielse |first4=G. |date=2023-02-13 |title=Measurement of the Electron Magnetic Moment |url=https://link.aps.org/doi/10.1103/PhysRevLett.130.071801 |journal=Physical Review Letters |volume=130 |issue=7 |pages=071801 |doi=10.1103/PhysRevLett.130.071801|pmid=36867820 |arxiv=2209.13084 |bibcode=2023PhRvL.130g1801F }}</ref> Other methods include the A.C. Josephson effect and photon recoil in atom interferometry.<ref name=Yu2019> {{cite journal |last1=Yu |first1=C. |last2=Zhong |first2=W. |last3=Estey |first3=B. |last4=Kwan |first4=J. |last5=Parker |first5=R.H. |last6=Müller |first6=H. |year=2019 |title=Atom-interferometry measurement of the fine structure constant |journal=Annalen der Physik |volume=531 |issue=5 |page=1800346 |doi=10.1002/andp.201800346 |doi-access=free |bibcode=2019AnP...53100346Y }}</ref> There is general agreement for the value of {{mvar|α}}, as measured by these different methods. The preferred methods in 2019 are measurements of electron anomalous magnetic moments and of photon recoil in atom interferometry.<ref name=Yu2019/> The theory of QED predicts a relationship between the [[g-factor (physics)|dimensionless magnetic moment]] of the [[electron]] and the fine-structure constant {{mvar|α}} (the magnetic moment of the electron is also referred to as the [[g-factor (physics)|electron {{mvar|g}}-factor]] {{math|''g''<sub>e</sub>}}). One of the most precise values of {{mvar|α}} obtained experimentally (as of 2023) is based on a measurement of {{math|''g''<sub>e</sub>}} using a one-electron so-called "quantum cyclotron" apparatus,<ref name=":0" /> together with a calculation via the theory of QED that involved {{val|12672}} tenth-order [[Feynman diagrams]]:<ref name=Aoyama12> {{cite journal |last1=Aoyama |first1=T. |last2=Hayakawa |first2=M. |last3=Kinoshita |first3=T. |last4=Nio |first4=M. |year=2012 |title=Tenth-order QED contribution to the electron {{nowrap|''g'' − 2}} and an improved value of the fine structure constant |journal=[[Physical Review Letters]] |volume=109 |issue=11 |page=111807 |arxiv=1205.5368 |bibcode=2012PhRvL.109k1807A |doi=10.1103/PhysRevLett.109.111807 |pmid=23005618 |s2cid=14712017 }} </ref> {{block indent|{{math|{{sfrac|1|''α''}}}} {{=}} {{val|137.035999166|(15)}}.}} This measurement of {{mvar|α}} has a relative standard uncertainty of {{val|1.1|e=-10}}. This value and uncertainty are about the same as the latest experimental results.<ref> {{cite journal |last1=Bouchendira |first1=Rym |last2=Cladé |first2=Pierre |last3=Guellati-Khélifa |first3=Saïda |last4=Nez |first4=François |last5=Biraben |first5=François |year=2011 |title=New determination of the fine-structure constant and test of the quantum electrodynamics |journal=[[Physical Review Letters]] |volume=106 |issue=8 |page=080801 |arxiv=1012.3627 |bibcode=2011PhRvL.106h0801B |doi=10.1103/PhysRevLett.106.080801 |pmid=21405559 |s2cid=47470092 |type=Submitted manuscript |url=https://hal.archives-ouvertes.fr/hal-00547525/file/MesureAlpha2010.pdf |archive-url=https://web.archive.org/web/20181104125931/https://hal.archives-ouvertes.fr/hal-00547525/file/MesureAlpha2010.pdf |archive-date=2018-11-04 |url-status=live }}</ref> Further refinement of the experimental value was published by the end of 2020, giving the value {{block indent|{{math|{{sfrac|1|''α''}}}} {{=}} {{val|137.035999206|(11)}},}} with a relative accuracy of {{val|8.1|e=-11}}, which has a significant discrepancy from the previous experimental value.<ref name="morel2020"> {{cite journal |author1=Morel, Léo |author2=Yao, Zhibin |author3=Cladé, Pierre |author4=Guellati-Khélifa, Saïda |title=Determination of the fine-structure constant with an accuracy of 81 parts per trillion |journal=[[Nature (journal)|Nature]] |volume=588 |pages=61–65 |year=2020 |issue=7836 |doi=10.1038/s41586-020-2964-7 |pmid=33268866 |bibcode=2020Natur.588...61M |s2cid=227259475 |url=https://hal.archives-ouvertes.fr/hal-03107990/file/main.pdf }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)