Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Angular frequency (''ω'') === When the independent variable (<math>x</math>) represents ''time'' (often denoted by <math>t</math>), the transform variable (<math>\xi</math>) represents [[frequency]] (often denoted by <math>f</math>). For example, if time is measured in [[second]]s, then frequency is in [[hertz]]. The Fourier transform can also be written in terms of [[angular frequency]], <math>\omega = 2\pi \xi,</math> whose units are [[radian]]s per second. The substitution <math>\xi = \tfrac{\omega}{2 \pi}</math> into {{EquationNote|Eq.1}} produces this convention, where function <math>\widehat f</math> is relabeled <math>\widehat {f_1}:</math> <math display="block">\begin{align} \widehat {f_3}(\omega) &\triangleq \int_{-\infty}^{\infty} f(x)\cdot e^{-i\omega x}\, dx = \widehat{f_1}\left(\tfrac{\omega}{2\pi}\right),\\ f(x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f_3}(\omega)\cdot e^{i\omega x}\, d\omega. \end{align} </math> Unlike the {{EquationNote|Eq.1}} definition, the Fourier transform is no longer a [[unitary transformation]], and there is less symmetry between the formulas for the transform and its inverse. Those properties are restored by splitting the <math>2 \pi</math> factor evenly between the transform and its inverse, which leads to another convention: <math display="block">\begin{align} \widehat{f_2}(\omega) &\triangleq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\cdot e^{- i\omega x}\, dx = \frac{1}{\sqrt{2\pi}}\ \ \widehat{f_1}\left(\tfrac{\omega}{2\pi}\right), \\ f(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f_2}(\omega)\cdot e^{ i\omega x}\, d\omega. \end{align}</math> Variations of all three conventions can be created by conjugating the complex-exponential [[integral kernel|kernel]] of both the forward and the reverse transform. The signs must be opposites. {| class="wikitable" |+ Summary of popular forms of the Fourier transform, one-dimensional |- ! ordinary frequency {{mvar|ΞΎ}} (Hz) ! unitary | <math>\begin{align} \widehat{f_1}(\xi)\ &\triangleq\ \int_{-\infty}^{\infty} f(x)\, e^{-i 2\pi \xi x}\, dx = \sqrt{2\pi}\ \ \widehat{f_2}(2 \pi \xi) = \widehat{f_3}(2 \pi \xi) \\ f(x) &= \int_{-\infty}^{\infty} \widehat{f_1}(\xi)\, e^{i 2\pi x \xi}\, d\xi \end{align}</math> |- ! rowspan="2" | angular frequency {{mvar|Ο}} (rad/s) ! unitary | <math>\begin{align} \widehat{f_2}(\omega)\ &\triangleq\ \frac{1}{\sqrt{2\pi}}\ \int_{-\infty}^{\infty} f(x)\, e^{-i \omega x}\, dx = \frac{1}{\sqrt{2\pi}}\ \ \widehat{f_1} \! \left(\frac{\omega}{2 \pi}\right) = \frac{1}{\sqrt{2\pi}}\ \ \widehat{f_3}(\omega) \\ f(x) &= \frac{1}{\sqrt{2\pi}}\ \int_{-\infty}^{\infty} \widehat{f_2}(\omega)\, e^{i \omega x}\, d\omega \end{align}</math> |- ! non-unitary | <math>\begin{align} \widehat{f_3}(\omega) \ &\triangleq\ \int_{-\infty}^{\infty} f(x)\, e^{-i\omega x}\, dx = \widehat{f_1} \left(\frac{\omega}{2 \pi}\right) = \sqrt{2\pi}\ \ \widehat{f_2}(\omega) \\ f(x) &= \frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f_3}(\omega)\, e^{i \omega x}\, d\omega \end{align}</math> |} {| class="wikitable" |+ Generalization for {{math|''n''}}-dimensional functions |- ! ordinary frequency {{mvar|ΞΎ}} (Hz) ! unitary | <math>\begin{align} \widehat{f_1}(\xi)\ &\triangleq\ \int_{\mathbb{R}^n} f(x) e^{-i 2\pi \xi\cdot x}\, dx = (2 \pi)^\frac{n}{2}\widehat{f_2}(2\pi \xi) = \widehat{f_3}(2\pi \xi) \\ f(x) &= \int_{\mathbb{R}^n} \widehat{f_1}(\xi) e^{i 2\pi \xi\cdot x}\, d\xi \end{align}</math> |- ! rowspan="2" | angular frequency {{mvar|Ο}} (rad/s) ! unitary | <math>\begin{align} \widehat{f_2}(\omega)\ &\triangleq\ \frac{1}{(2 \pi)^\frac{n}{2}} \int_{\mathbb{R}^n} f(x) e^{-i \omega\cdot x}\, dx = \frac{1}{(2 \pi)^\frac{n}{2}} \widehat{f_1} \! \left(\frac{\omega}{2 \pi}\right) = \frac{1}{(2 \pi)^\frac{n}{2}} \widehat{f_3}(\omega) \\ f(x) &= \frac{1}{(2 \pi)^\frac{n}{2}} \int_{\mathbb{R}^n} \widehat{f_2}(\omega)e^{i \omega\cdot x}\, d\omega \end{align}</math> |- ! non-unitary | <math>\begin{align} \widehat{f_3}(\omega) \ &\triangleq\ \int_{\mathbb{R}^n} f(x) e^{-i\omega\cdot x}\, dx = \widehat{f_1} \left(\frac{\omega}{2 \pi}\right) = (2 \pi)^\frac{n}{2} \widehat{f_2}(\omega) \\ f(x) &= \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \widehat{f_3}(\omega) e^{i \omega\cdot x}\, d\omega \end{align}</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)