Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fractional Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== The {{math|''Ξ±''}}-th order fractional Fourier transform operator, <math>\mathcal{F}_\alpha</math>, has the properties: ====Additivity==== For any real angles {{math|''Ξ±, Ξ²''}}, <math display=block>\mathcal{F}_{\alpha+\beta} = \mathcal{F}_\alpha \circ \mathcal{F}_\beta = \mathcal{F}_\beta \circ \mathcal{F}_\alpha.</math> ====Linearity==== <math display=block>\mathcal{F}_\alpha \left [\sum\nolimits_k b_kf_k(u) \right ]=\sum\nolimits_k b_k\mathcal{F}_\alpha \left [f_k(u) \right ]</math> ====Integer Orders==== If {{math|''Ξ±''}} is an integer multiple of <math>\pi / 2</math>, then: <math display=block>\mathcal{F}_\alpha = \mathcal{F}_{k\pi/2} = \mathcal{F}^k = (\mathcal{F})^k</math> Moreover, it has following relation <math display=block>\begin{align} \mathcal{F}^2 &= \mathcal{P} && \mathcal{P}[f(u)]=f(-u)\\ \mathcal{F}^3 &= \mathcal{F}^{-1} = (\mathcal{F})^{-1} \\ \mathcal{F}^4 &= \mathcal{F}^0 = \mathcal{I} \\ \mathcal{F}^i &= \mathcal{F}^j && i \equiv j \mod 4 \end{align}</math> ====Inverse==== <math display=block>(\mathcal{F}_\alpha)^{-1}=\mathcal{F}_{-\alpha}</math> ====Commutativity==== <math display=block>\mathcal{F}_{\alpha_1}\mathcal{F}_{\alpha_2}=\mathcal{F}_{\alpha_2}\mathcal{F}_{\alpha_1}</math> ====Associativity==== <math display=block> \left (\mathcal{F}_{\alpha_1}\mathcal{F}_{\alpha_2} \right )\mathcal{F}_{\alpha_3} = \mathcal{F}_{\alpha_1} \left (\mathcal{F}_{\alpha_2}\mathcal{F}_{\alpha_3} \right )</math> ====Unitarity==== <math display=block>\int f(t)g^*(t)dt=\int f_\alpha(u)g_\alpha^*(u)du</math> ====Time Reversal==== <math display=block>\mathcal{F}_\alpha\mathcal{P}=\mathcal{P}\mathcal{F}_\alpha</math> <math display=block>\mathcal{F}_\alpha[f(-u)]=f_\alpha(-u)</math> ====Transform of a shifted function==== {{see also|Generalizations of Pauli matrices#Construction: The clock and shift matrices}} Define the shift and the phase shift operators as follows: <math display=block>\begin{align} \mathcal{SH}(u_0)[f(u)] &= f(u+u_0) \\ \mathcal{PH}(v_0)[f(u)] &= e^{j2\pi v_0u}f(u) \end{align}</math> Then <math display=block>\begin{align} \mathcal{F}_\alpha \mathcal{SH}(u_0) &= e^{j\pi u_0^2 \sin\alpha \cos\alpha} \mathcal{PH}(u_0\sin\alpha) \mathcal{SH}(u_0\cos\alpha) \mathcal{F}_\alpha, \end{align}</math> that is, <math display=block>\begin{align} \mathcal{F}_\alpha [f(u+u_0)] &=e^{j\pi u_0^2 \sin\alpha \cos\alpha} e^{j2\pi uu_0 \sin\alpha} f_\alpha (u+u_0 \cos\alpha) \end{align}</math> ====Transform of a scaled function==== Define the scaling and chirp multiplication operators as follows: <math display=block>\begin{align} M(M)[f(u)] &= |M|^{-\frac{1}{2}} f \left (\tfrac{u}{M} \right) \\ Q(q)[f(u)] &= e^{-j\pi qu^2 } f(u) \end{align}</math> Then, <math display=block>\begin{align} \mathcal{F}_\alpha M(M) &= Q \left (-\cot \left (\frac{1-\cos^2 \alpha'}{\cos^2 \alpha}\alpha \right ) \right)\times M \left (\frac{\sin \alpha}{M\sin \alpha'} \right )\mathcal{F}_{\alpha'} \\ [6pt] \mathcal{F}_\alpha \left [|M|^{-\frac{1}{2}} f \left (\tfrac{u}{M} \right) \right ] &= \sqrt{\frac{1-j \cot\alpha}{1-jM^2 \cot\alpha}} e^{j\pi u^2\cot \left (\frac{1-\cos^2 \alpha'}{\cos^2 \alpha}\alpha \right )} \times f_a \left (\frac{Mu \sin\alpha'}{\sin\alpha} \right ) \end{align}</math> Notice that the fractional Fourier transform of <math>f(u/M)</math> cannot be expressed as a scaled version of <math>f_\alpha (u)</math>. Rather, the fractional Fourier transform of <math>f(u/M)</math> turns out to be a scaled and chirp modulated version of <math>f_{\alpha'}(u)</math> where <math>\alpha\neq\alpha'</math> is a different order.<ref>An elementary recipe, using the contangent function, and its (multi-valued) inverse, for <math>\alpha'</math> in terms of <math>\alpha</math> and <math>M</math> exists.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)