Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Opposite functor === Every functor <math>F \colon C\to D</math> induces the '''opposite functor''' <math>F^\mathrm{op} \colon C^\mathrm{op}\to D^\mathrm{op}</math>, where <math>C^\mathrm{op}</math> and <math>D^\mathrm{op}</math> are the [[opposite category|opposite categories]] to <math>C</math> and <math>D</math>.<ref>{{citation|first1=Saunders|last1=Mac Lane|author-link1=Saunders Mac Lane|first2=Ieke|last2=Moerdijk|author-link2=Ieke Moerdijk|title=Sheaves in geometry and logic: a first introduction to topos theory|publisher=Springer|year=1992|isbn=978-0-387-97710-2}}</ref> By definition, <math>F^\mathrm{op}</math> maps objects and morphisms in the identical way as does <math>F</math>. Since <math>C^\mathrm{op}</math> does not coincide with <math>C</math> as a category, and similarly for <math>D</math>, <math>F^\mathrm{op}</math> is distinguished from <math>F</math>. For example, when composing <math>F \colon C_0\to C_1</math> with <math>G \colon C_1^\mathrm{op}\to C_2</math>, one should use either <math>G\circ F^\mathrm{op}</math> or <math>G^\mathrm{op}\circ F</math>. Note that, following the property of [[opposite category]], <math>\left(F^\mathrm{op}\right)^\mathrm{op} = F</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)