Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
GC-content
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Genomic content== === Within-genome variation === The GC-ratio within a genome is found to be markedly variable. These variations in GC-ratio within the genomes of more complex organisms result in a mosaic-like formation with islet regions called [[Isochore (genetics)|isochores]].<ref>{{cite journal |author=Bernardi G |title=Isochores and the evolutionary genomics of vertebrates |journal=Gene |volume=241 |issue=1 |pages=3–17 |date=January 2000 |pmid=10607893 |doi=10.1016/S0378-1119(99)00485-0}}</ref> This results in the variations in staining intensity in [[chromosomes]].<ref>{{cite journal |vauthors=Furey TS, Haussler D |title=Integration of the cytogenetic map with the draft human genome sequence |journal=Hum. Mol. Genet. |volume=12 |issue=9 |pages=1037–44 |date=May 2003 |pmid=12700172 |url=http://hmg.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12700172 |doi=10.1093/hmg/ddg113|doi-access=free }}</ref> GC-rich isochores typically include many protein-coding genes within them, and thus determination of GC-ratios of these specific regions contributes to [[gene mapping|mapping]] gene-rich regions of the genome.<ref>{{cite journal |vauthors=Sumner AT, de la Torre J, Stuppia L |title=The distribution of genes on chromosomes: a cytological approach |journal=J. Mol. Evol. |volume=37 |issue=2 |pages=117–22 |date=August 1993 |pmid=8411200 |doi=10.1007/BF02407346 |bibcode=1993JMolE..37..117S |s2cid=24677431 }}</ref><ref>{{cite journal |vauthors=Aïssani B, Bernardi G |title=CpG islands, genes and isochores in the genomes of vertebrates |journal=Gene |volume=106 |issue=2 |pages=185–95 |date=October 1991 |pmid=1937049 |doi=10.1016/0378-1119(91)90198-K }}</ref> === Coding sequences === Within a long region of genomic sequence, genes are often characterised by having a higher GC-content in contrast to the background GC-content for the entire genome.<ref name="pmid28261263">{{cite journal| author=Romiguier J, Roux C| title=Analytical Biases Associated with GC-Content in Molecular Evolution. | journal=Front Genet | year= 2017 | volume= 8 | issue= | page= 16 | pmid=28261263 | doi=10.3389/fgene.2017.00016 | pmc=5309256 | doi-access=free }}</ref> There is evidence that the length of the [[coding region]] of a [[gene]] is directly proportional to higher G+C content.<ref>{{cite journal |vauthors=Pozzoli U, Menozzi G, Fumagalli M |title=Both selective and neutral processes drive GC content evolution in the human genome |journal=BMC Evol. Biol. |volume=8 |page=99 |year=2008 |issue=1 |pmid=18371205 |pmc=2292697 |doi=10.1186/1471-2148-8-99 |bibcode=2008BMCEE...8...99P |display-authors=etal |doi-access=free }}</ref> This has been pointed to the fact that the [[stop codon]] has a bias towards A and T nucleotides, and, thus, the shorter the sequence the higher the AT bias.<ref>{{cite journal |vauthors=Wuitschick JD, Karrer KM |title=Analysis of genomic G + C content, codon usage, initiator codon context and translation termination sites in ''Tetrahymena thermophila'' |journal=J. Eukaryot. Microbiol. |volume=46 |issue=3 |pages=239–47 |year=1999 |pmid=10377985 |doi=10.1111/j.1550-7408.1999.tb05120.x |s2cid=28836138 }}</ref> Comparison of more than 1,000 [[orthologous]] genes in mammals showed marked within-genome variations of the [[codon|third-codon position]] GC content, with a range from less than 30% to more than 80%.<ref name="Romiguier2010"/> === Among-genome variation === GC content is found to be variable with different organisms, the process of which is envisaged to be contributed to by variation in [[Gene-centered view of evolution|selection]], mutational bias, and biased recombination-associated [[DNA repair]].<ref>{{cite journal |author=Birdsell JA |title=Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution |journal=Mol. Biol. Evol. |volume=19 |issue=7 |pages=1181–97 |date=1 July 2002|pmid=12082137 |url=http://mbe.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12082137 |doi=10.1093/oxfordjournals.molbev.a004176|citeseerx=10.1.1.337.1535 }}</ref> The average GC-content in human genomes ranges from 35% to 60% across 100-Kb fragments, with a mean of 41%.<ref name="IHSGC2001">{{cite journal |author=International Human Genome Sequencing Consortium | title = Initial sequencing and analysis of the human genome | journal = Nature | volume = 409 | issue = 6822 | pages = 860–921 | date = Feb 2001 | pmid = 11237011 | doi = 10.1038/35057062 | bibcode = 2001Natur.409..860L | doi-access = free | hdl = 2027.42/62798 | hdl-access = free }} (page 876)</ref><!--The "Romiguier2010" paper provides a mean GC level at the third codon position in genes. Since protein coding regions are massively overrepresented in GC-rich DNA, their number (46%) is much higher than the genomic mean.--> The GC-content of [[Yeast]] (''[[Saccharomyces cerevisiae]]'') is 38%,<ref>[https://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=128 Whole genome data of ''Saccharomyces cerevisiae'' on NCBI]</ref> and that of another common [[model organism]], thale cress (''[[Arabidopsis thaliana]]''), is 36%.<ref>[https://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=116 Whole genome data of '' Arabidopsis thaliana'' on NCBI]</ref> Because of the nature of the [[genetic code]], it is virtually impossible for an organism to have a genome with a GC-content approaching either 0% or 100%. However, a species with an extremely low GC-content is ''[[Plasmodium falciparum]]'' (GC% = ~20%),<ref>[https://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=148 Whole genome data of ''Plasmodium falciparum'' on NCBI]</ref> and it is usually common to refer to such examples as being AT-rich instead of GC-poor.<ref>{{cite journal |vauthors=Musto H, Cacciò S, Rodríguez-Maseda H, Bernardi G |title=Compositional constraints in the extremely GC-poor genome of ''Plasmodium falciparum'' |journal=Mem. Inst. Oswaldo Cruz |volume=92 |issue=6 |pages=835–41 |year=1997 |pmid=9566216 |url=http://www.scielo.br/pdf/mioc/v92n6/3431.pdf |doi=10.1590/S0074-02761997000600020|doi-access=free }}</ref> Several mammalian species (e.g., [[shrew]], [[microbat]], [[tenrec]], [[rabbit]]) have independently undergone a marked increase in the GC-content of their genes. These GC-content changes are correlated with species [[Phenotypic trait|life-history traits]] (e.g., body mass or longevity) and [[genome size]],<ref name="Romiguier2010">{{Cite journal|last1=Romiguier|first1=Jonathan|last2=Ranwez|first2=Vincent|last3=Douzery|first3=Emmanuel J. P.|last4=Galtier|first4=Nicolas|date=2010-08-01|title=Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes|journal=Genome Research|language=en|volume=20|issue=8|pages=1001–1009|doi=10.1101/gr.104372.109|issn=1088-9051|pmc=2909565|pmid=20530252}}</ref> and might be linked to a molecular phenomenon called the GC-biased [[gene conversion]].<ref name=Duret2009>{{cite journal |vauthors=Duret L, Galtier N |s2cid=9126286 |title=Biased gene conversion and the evolution of mammalian genomic landscapes |journal=Annu Rev Genom Hum Genet |volume=10 |pages=285–311 |year=2009 |pmid=19630562 |doi=10.1146/annurev-genom-082908-150001 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)