Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian quadrature
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example of two-point Gauss quadrature rule == Use the two-point Gauss quadrature rule to approximate the distance in meters covered by a rocket from <math>t = 8\mathrm{s} </math> to <math>t = 30\mathrm{s},</math> as given by <math display="block">s = \int_{8}^{30}{\left( 2000\ln\left[ \frac{140000}{140000 - 2100t} \right] - 9.8t \right){dt}}</math> Change the limits so that one can use the weights and abscissae given in Table 1. Also, find the absolute relative true error. The true value is given as 11061.34 m. Solution First, changing the limits of integration from <math>\left[ 8,30 \right]</math> to <math>\left[ - 1,1 \right]</math> gives <math display="block"> \begin{align} \int_{8}^{30} {f(t) dt} &= \frac{30 - 8}{2} \int_{- 1}^{1}{f\left( \frac{30 - 8}{2}x + \frac{30 + 8}{2} \right){dx}} \\ &= 11\int_{- 1}^{1}{f\left( 11x + 19 \right){dx}} \end{align} </math> Next, get the weighting factors and function argument values from Table 1 for the two-point rule, *<math>c_1 = 1.000000000 </math> *<math>x_1 = - 0.577350269 </math> *<math>c_2 = 1.000000000 </math> *<math>x_2 = 0.577350269 </math> Now we can use the Gauss quadrature formula <math display="block"> \begin{align} 11\int_{-1}^{1}{f\left( 11x + 19 \right){dx}} & \approx 11\left[ c_1 f\left( 11 x_1 + 19 \right) + c_2 f\left( 11 x_2 + 19 \right) \right] \\ &= 11\left[ f\left( 11( - 0.5773503) + 19 \right) + f\left( 11(0.5773503) + 19 \right) \right] \\ &= 11\left[ f(12.64915) + f(25.35085) \right] \\ &= 11\left[ (296.8317) + (708.4811) \right] \\ &= 11058.44 \end{align}</math> since <math display="block"> \begin{align} f(12.64915) & = 2000\ln\left[ \frac{140000}{140000 - 2100(12.64915)} \right] - 9.8(12.64915) \\ &= 296.8317 \end{align}</math> <math display="block"> \begin{align} f(25.35085) & = 2000\ln\left[ \frac{140000}{140000 - 2100(25.35085)} \right] - 9.8(25.35085) \\ &= 708.4811 \end{align}</math> Given that the true value is 11061.34 m, the absolute relative true error, <math>\left| \varepsilon_{t} \right|</math> is <math display="block"> \left| \varepsilon_{t} \right| = \left| \frac{11061.34 - 11058.44}{11061.34} \right| \times 100\% = 0.0262\% </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)