Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General position
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Different geometries == Different geometries allow different notions of geometric constraints. For example, a circle is a concept that makes sense in [[Euclidean geometry]], but not in affine linear geometry or projective geometry, where circles cannot be distinguished from ellipses, since one may squeeze a circle to an ellipse. Similarly, a parabola is a concept in affine geometry but not in projective geometry, where a parabola is simply a kind of conic. The geometry that is overwhelmingly used in algebraic geometry is projective geometry, with affine geometry finding significant but far less use. Thus, in Euclidean geometry three non-collinear points determine a circle (as the [[circumcircle]] of the triangle they define), but four points in general do not (they do so only for [[cyclic quadrilateral]]s), so the notion of "general position with respect to circles", namely "no four points lie on a circle" makes sense. In projective geometry, by contrast, circles are not distinct from conics, and five points determine a conic, so there is no projective notion of "general position with respect to circles".
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)