Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General topology
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Basis for a topology=== {{Main|Basis (topology)}} A '''base''' (or '''basis''') ''B'' for a [[topological space]] ''X'' with [[topological space|topology]] ''T'' is a collection of [[open set]]s in ''T'' such that every open set in ''T'' can be written as a union of elements of ''B''.<ref>{{cite book |last1=Merrifield |first1=Richard E. |last2=Simmons |first2=Howard E. |author-link2=Howard Ensign Simmons Jr. |title=Topological Methods in Chemistry |year=1989 |publisher=John Wiley & Sons |location=New York |isbn=0-471-83817-9 |url=https://archive.org/details/topologicalmetho00merr/page/16 |access-date=27 July 2012 |pages=[https://archive.org/details/topologicalmetho00merr/page/16 16] |quote='''Definition.''' A collection ''B'' of subsets of a topological space ''(X,T)'' is called a ''basis'' for ''T'' if every open set can be expressed as a union of members of ''B''. |url-access=registration }}</ref><ref>{{cite book |last=Armstrong |first=M. A. |title=Basic Topology |year=1983 |publisher=Springer |isbn=0-387-90839-0 |url=https://www.springer.com/mathematics/geometry/book/978-0-387-90839-7 |access-date=13 June 2013 |page=30 |quote=Suppose we have a topology on a set ''X'', and a collection <math>\beta</math> of open sets such that every open set is a union of members of <math>\beta</math>. Then <math>\beta</math> is called a ''base'' for the topology...}}</ref> We say that the base ''generates'' the topology ''T''. Bases are useful because many properties of topologies can be reduced to statements about a base that generates that topology—and because many topologies are most easily defined in terms of a base that generates them.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)