Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalised logistic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Gradient of generalized logistic function == When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point <math>t</math> (see<ref name=fekedulegn1999parameter>{{cite journal|last=Fekedulegn|first=Desta|author2=Mairitin P. Mac Siurtain|author3=Jim J. Colbert|title=Parameter Estimation of Nonlinear Growth Models in Forestry|journal=Silva Fennica|year=1999|volume=33|issue=4|pages=327β336|doi=10.14214/sf.653|url=http://www.metla.fi/silvafennica/full/sf33/sf334327.pdf|access-date=2011-05-31|archive-url=https://web.archive.org/web/20110929005929/http://www.metla.fi/silvafennica/full/sf33/sf334327.pdf|archive-date=2011-09-29|url-status=dead}}</ref>). For the case where <math>C = 1</math>, :<math> \begin{align} \\ \frac{\partial Y}{\partial A} &= 1 - (1 + Qe^{-B(t-M)})^{-1/\nu}\\ \\ \frac{\partial Y}{\partial K} &= (1 + Qe^{-B(t-M)})^{-1/\nu}\\ \\ \frac{\partial Y}{\partial B} &= \frac{(K-A)(t-M)Qe^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}\\ \\ \frac{\partial Y}{\partial \nu} &= \frac{(K-A)\ln(1 + Qe^{-B(t-M)})}{\nu^2(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}}}\\ \\ \frac{\partial Y}{\partial Q} &= -\frac{(K-A)e^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}\\ \\ \frac{\partial Y}{\partial M} &= -\frac{(K-A)QBe^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}} \\ \end{align} </math><!-- DY/dt missing .... -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)