Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalized permutation matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Subgroups=== * The subgroup where all entries are 1 is exactly the [[permutation matrices]], which is isomorphic to the symmetric group. * The subgroup where all entries are Β±1 is the [[signed permutation matrices]], which is the [[hyperoctahedral group]]. * The subgroup where the entries are ''m''th [[roots of unity]] <math>\mu_m</math> is isomorphic to a [[generalized symmetric group]]. * The subgroup of diagonal matrices is [[abelian group|abelian]], normal, and a maximal abelian subgroup. The [[quotient group]] is the symmetric group, and this construction is in fact the [[Weyl group]] of the general linear group: the diagonal matrices are a [[maximal torus]] in the general linear group (and are their own [[centralizer]]), the generalized permutation matrices are the normalizer of this torus, and the quotient, <math>N(T)/Z(T) = N(T)/T \cong S_n</math> is the Weyl group.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)